Please use this identifier to cite or link to this item: https://ptsldigital.ukm.my/jspui/handle/123456789/578540
Title: External constraints of neural cognition for cimb stock closing price prediction
Authors: Chang Sim Vui (UMS)
Chin Kim On (UMS)
Gan Kim Soon (UMS)
Rayner Alfred (UMS)
Patricia Anthony
Keywords: Artificial Neural Network (ANNS)
Backpropagation
Feedforward Neural Network (FFNN)
Levenberg-Marquardt algorithm
Macroeconomic parameters
Stock market forecasting
Issue Date: Jun-2017
Description: This paper investigates the accuracy of Feedforward Neural Network (FFNN) with different external parameters in predicting the closing price of a particular stock. Specifically, the feedforward neural network was trained using Levenberg-Marquardt backpropagation algorithm to forecast the CIMB stock’s closing price in the Kuala Lumpur Stock exchange (KLSE). The results indicate that the use of external parameters can improve the accuracy of the stock’s closing price.
News Source: Pertanika Journals
ISSN: 0128-7680
Volume: 25
Pages: 29-38
Publisher: Universiti Putra Malaysia Press
Appears in Collections:Journal Content Pages/ Kandungan Halaman Jurnal

Files in This Item:
File Description SizeFormat 
ukmvital_116006+Source01+Source010.PDF824.37 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.