Please use this identifier to cite or link to this item: https://ptsldigital.ukm.my/jspui/handle/123456789/578540
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang Sim Vui (UMS)
dc.contributor.authorChin Kim On (UMS)
dc.contributor.authorGan Kim Soon (UMS)
dc.contributor.authorRayner Alfred (UMS)
dc.contributor.authorPatricia Anthony
dc.date.accessioned2023-11-06T03:03:20Z-
dc.date.available2023-11-06T03:03:20Z-
dc.date.issued2017-06
dc.identifier.issn0128-7680
dc.identifier.otherukmvital:116006
dc.identifier.urihttps://ptsldigital.ukm.my/jspui/handle/123456789/578540-
dc.descriptionThis paper investigates the accuracy of Feedforward Neural Network (FFNN) with different external parameters in predicting the closing price of a particular stock. Specifically, the feedforward neural network was trained using Levenberg-Marquardt backpropagation algorithm to forecast the CIMB stock’s closing price in the Kuala Lumpur Stock exchange (KLSE). The results indicate that the use of external parameters can improve the accuracy of the stock’s closing price.
dc.language.isoen
dc.publisherUniversiti Putra Malaysia Press
dc.relation.haspartPertanika Journals
dc.relation.urihttp://www.pertanika.upm.edu.my/regular_issues.php?jtype=2&journal=JST-25-S-6
dc.rightsUKM
dc.subjectArtificial Neural Network (ANNS)
dc.subjectBackpropagation
dc.subjectFeedforward Neural Network (FFNN)
dc.subjectLevenberg-Marquardt algorithm
dc.subjectMacroeconomic parameters
dc.subjectStock market forecasting
dc.titleExternal constraints of neural cognition for cimb stock closing price prediction
dc.typeJournal Article
dc.format.volume25
dc.format.pages29-38
dc.format.issueSpecial Issue
Appears in Collections:Journal Content Pages/ Kandungan Halaman Jurnal

Files in This Item:
File Description SizeFormat 
ukmvital_116006+Source01+Source010.PDF824.37 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.