Please use this identifier to cite or link to this item: https://ptsldigital.ukm.my/jspui/handle/123456789/519700
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorZainuddin Sajuri, Assoc. Prof. Dr.-
dc.contributor.authorAmmar Adil Abulnabe (P67934)-
dc.date.accessioned2023-10-17T08:13:55Z-
dc.date.available2023-10-17T08:13:55Z-
dc.date.issued2020-02-18-
dc.identifier.otherukmvital:123681-
dc.identifier.urihttps://ptsldigital.ukm.my/jspui/handle/123456789/519700-
dc.descriptionPh.D.,Soft copy cannot be uploaded-
dc.language.isoeng-
dc.publisherUKM, Bangi-
dc.relationFaculty of Engineering and Built Environment / Fakulti Kejuruteraan dan Alam Bina-
dc.rightsUKM-
dc.subjectUniversiti Kebangsaan Malaysia -- Dissertations-
dc.subjectDissertations, Academic -- Malaysia-
dc.subjectFatigue-
dc.subjectStainless steel-
dc.subjectAlgorithm-
dc.subjectFuzzy inference system-
dc.titleFatigue crack growth prediction of ultra-thin 301L stainless steel sheet using genetic algorithm and fuzzy inference system-
dc.typetheses-
dc.format.pages150-
dc.identifier.barcode005766(2021)(PL2)-
Appears in Collections:Faculty of Engineering and Built Environment / Fakulti Kejuruteraan dan Alam Bina

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.