Please use this identifier to cite or link to this item: https://ptsldigital.ukm.my/jspui/handle/123456789/391023
Title: Programming Code for Online BAF Monitoring
Authors: Hassimi Abu Hasan
Siti Rozaimah Sheikh Abdullah
Siti Kartom Kamarudin
Noorhisham Tan Kofli
Keywords: Simultaneous ammonia and manganese removals
Drinking water treatment
Biological aerated filter
Real-time monitoring
On–off aeration
Dissolved oxygen
Issue Date: 2013
Description: The biological aerated filter (BAF) system, a new alternative in drinking water treatment, was designed to remove NH4+–N and Mn2+ simultaneously. This study aimed to control the aeration time in the BAF system for simultaneous NH4+–N and Mn2+ removal to achieve the Malaysian effluent quality regulation for drinking water. The experiment was conducted under four strategies of S1, S2, S3 and S4. The results demonstrated that acceptable levels of NH4+–N and Mn2+ were achieved over a 6 h aeration period (S1), producing effluent concentrations of 0.7 mg/L (93.2% removal) and 0.08 mg/L (79.6% removal), respectively. At the initial treatment of S1 and S2, the dissolved oxygen (DO) level rapidly increased until it reached a saturated concentration (6.8 mg/L DO) after 2 h period. Automatic on–off aeration time to maintain 3 mg/L DO set point (S4) resulted with a good effluent quality of NH4+–N and Mn2+ compared with the 2 mg/L DO set point (S3) which did not meet the regulated standard limits. Through the automatic on–off aeration time, the saturated and excessive DO levels in the BAF system can be avoided consequently reduce the wastage of energy and electrical consumption for simultaneous NH4+–N and Mn2+ removal from drinking water treatment.
Appears in Collections:Physics, Engineering and Material Science

Files in This Item:
File SizeFormat 
Hassimi_PEMANTAUAN MASA NYATA_1 - Hassimi Abu Hasan.pdf47.85 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.