
Pertanika J. Sci. & Technol. 25 (S): 275 - 284 (2017)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680  © 2017 Universiti Putra Malaysia Press.

Optimising PID Controller using Slope Variation Method for 
Positioning Radio Telescope

N. Mohamad Zaber1*, A. J. Ishak1, A. Che Soh1, M. K. Hasan1 and A. N. Ishak2

1Department of Electrical and Electronic Engineering, Faculty of Engineering, 
Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia 
2National Space Agency (ANGKASA) Lot 2233, Jln Turi, Sg. Lang, Banting, Selangor, Malaysia

ABSTRACT

Radio telescope is an application that requires a precise position control as it should point to the exact 
coordinate so that it could receive the desired signal. The main idea of this paper is to optimise the PID 
controller by introducing slope variation method in order to control the position of a radio telescope. 
This proposed method is also validated with the presence of disturbance, such as wind gust disturbance 
with different speed amplitude. The results indicate that the proposed optimisation method has a better 
result with no overshoot and able to attenuate wind gust disturbance when compared with conventional 
PID controller.
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INTRODUCTION

For a large radio telescope, it is essential  it 
receives the intended signal while keeping 
its position accuracy. The challenges of 
maintaining its accuracy is increased  when 
the radio telescope exposed to disturbances 

and nonlinearities such as wind disturbance, 
saturation, backlash and many more. In order 
to sustain the accuracy, different control 
method and strategies are used. 

Cho et al., had utilised H∞ using step 
tracking algorithm to control the antenna 
system (Cho et al., 2003) where this method 
satisfied the requirement of the system. 
Referring to (Sahoo and Roy 2014; Garcia-
Sanz et al., 2012), QFT method had been 
used, where Suresh Kumar Sahoo et al. 
mentioned that the performance of the 
controller is satisfactory and meet the stability 
specifications with overshoot of 2.24% and 
very low steady state error. It takes into 
account the plant uncertainty in designing the 
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QFT controller. On the other hand, Garcia-Sanz et al., had considered saturation constraints in 
the simplified rigid body model of an existing extra-large radio telescope. The robustness of the 
designed QFT had been able to overcome the disturbance even in the influence of saturation 
nonlinearity. However, H∞ and QFT methods require a lot of mathematical formulation and 
understanding and hence become complicated.

Fuzzy logic controller then emerged as this method express mathematical equation based 
on phrases and thus make it understandable. Fuzzy logic has been used widely in controlling 
the radio telescope such as by (Okumus et al., 2012; 2013). Okumus et al., had employed 
several fuzzy membership functions such as triangle, trapezoid, Gaussian, bell and Cauchy 
and compared the performance between them. The best membership function was then used in 
self-tuning fuzzy logic controller where it showed an improvement in terms of overshoot and 
rise time. Nevertheless, expert knowledge of the system is required prior to implementing fuzzy 
logic controller so that fuzzy rules and its range can be properly set. Not only that, the process 
of designing fuzzy logic controller is still depending on trial-and-observation practice (Chen et 
al., 1993). Somehow, this condition caused difficulties in determine fuzzy rules and its range.

On contrary, PID controller has been used since decades ago due to its simplicity, easy to 
understand and implement and also able to control wide range of system applications (Qiu et 
al., 2014; Rahmani et al., 2012; Namazov, 2010; Yousef, 2012; Qiu et al., 2014).  It is one of 
the earlier control methods that still commonly used now. PID controller work by adjusting and 
tuning its parameters’ value until the desired output is met. However, this process consumes 
time and requires a lot of adjusting and tuning process. Thus, the purpose of this paper is to 
optimize the PID controller by introducing slope variation method and improve the performance 
of the controller including reduce the time consumed during tuning process.

MODELLING OF RADIO TELESCOPE

Radio telescope consists of two parts:
•	 DC servo motor

•	 Parabolic antenna dish (load)

In this section, the procedure in obtaining radio telescope model is presented. 

DC Servo Motor

Servo motor is a type of motor for operation involving position control as well as speed control. 
Input of this radio telescope is obtained from potentiometer which then converted to voltage 
and fed into a dc servo motor. Torque,Tm, developed by servo motor will rotate the antenna dish 
with desired speed, ωm.. The motor is driven only when there is difference between input and 
output. The larger the value, the greater the motor input voltage, and the faster motor turned 
(Nise, 2011). DC servo motor is modelled by converting the motor equation into Laplace 
transfer function. 
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Parabolic Antenna Dish (Load)

In this paper, the load is a parabolic antenna dish with diameter of 18 m. This dish is mounted 
on the servo motor. Generally, a radio telescope is made of two axes; azimuth (rotate side-to-
side direction) and elevation (moving up-down direction). In this paper the azimuth axis is  
studied. The angle of rotation for azimuth axis is between 0 - 360°. Figure 1 below illustrates 
the azimuth and elevation axis of a radio telescope as well as the schematic diagram of dc 
servo motor.

Figure 1. (a) Radio telescope; (b) Schematic diagram of DC servo motor within radio telescope system 
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3. METHODOLOGY 

PID controller was used in this project where it attempts to minimize the error generated by 

the system. The structure of PID controller is as Figure 2 below. Kp, Ki and Kd values are 

tuned to achieve the radio telescope performance criteria, in terms of overshoot, rise time, 

settling time and steady state error. In this paper, Ziegler-Nichols (ZN) heuristic method and 

the proposed PID optimization using slope variation method are implemented. Designed 

controller is validated by introducing wind gust disturbance into the system. 
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3.1 ZN Parameter Tuning 

     PID controller is tuned using ZN method where only Kp value is varied while others are 

set to zero. Kp value is tuned until it reaches natural frequency i.e. constant oscillation.  Then 

Ki and Kd values obtained by applying equation (1) where Tint, Tder are integral and derivative 

time constant. 
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3.2 Optimising PID Controller 

     The proposed optimisation of PID controller is done by considering the slope of the 

output response whenever PID parameters are varied as shown in Figure 3. The slope value is 

observed once output reach set point. This observation is important as it will affect overshoot 

and steady state error values. Eq. (2) below express the slope equation of the output response 

where y(th) is the highest output response. 
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This optimisation is done following steps below: 

• Kp value is tuned until the set point reach. The highest output response is determined 

and slope values are calculated.  
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ZN Parameter Tuning

PID controller is tuned using ZN method where only Kp value is varied while others are set 
to zero. Kp value is tuned until it reaches natural frequency i.e. constant oscillation.  Then Ki 

and Kd values obtained by applying equation (1) where Tint, Tder are integral and derivative 
time constant.
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3.2 Wind Model  

Wind disturbance is one of the external factors that could affect the performance of the 

radio telescope by deviating it from desired position (Wodek Gawronski, 2008). Generally, 

there are two types of wind loads that act towards the radio telescope antenna dish; namely 

steady-state and dynamic (gust) load (Wodek Gawronski, 2004). In this paper, only dynamic 

load is considered. This wind gust disturbance model is presented in the form of torque, Tg, 

act upon radio telescope drive, Tm, in which it gives increment to the total torque, T, as shown 

in Figure 3. Wind gust is generated from white noise of unit standard deviation that being 

formed from Davenport filter with a constant value, kw.  

 

Figure 4.  Wind disturbance acting on the antenna dish 
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wind gust disturbance model is presented in the form of torque, Tg, act upon radio telescope 
drive, Tm, in which it gives increment to the total torque, T, as shown in Figure 3. Wind gust 
is generated from white noise of unit standard deviation that being formed from Davenport 
filter with a constant value, kw. 

Figure 4. Wind disturbance acting on the antenna dish
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spectrum. From here, the Tw is obtained by linearizing equation (4) i.e. wind quadratic law for 
torque T and steady state wind, vs, which produce equation (5). 

       

The wind torque, Tg, is actually acquired from and related to the velocity gust value, vg, 

where it is a component of wind velocity, vw, and steady state wind velocity, vs, as per 

equation (3). The wind gust component, vg, is a random process with zero mean together with 

a Davenport spectrum. From here, the Tw is obtained by linearizing equation (4) i.e. wind 

quadratic law for torque T and steady state wind, vs, which produce equation (5).  

gsw vvv +=            (3) 

2, swvkTTorque =                (4) 

gswg vvkT 2=                    (5) 

4. RESULTS AND DISCUSSION 

The output of the simulation is presented and discussed in this section. Tuning PID 

parameters using ZN method somehow is tedious and time consuming. After tuning the Kp 

values, it turned out that the response cannot produce constant oscillation as shown in Figure 

4 (a-d). Thus, the PID parameters are then set using trial-and-error method where Kp value is 

choose by referring to the ZN output that gives better result compared to other values. Thus, 

the obtained parameters value is Kp=20, Ki=0.5 and Kd=3. 

 

						      (3)

       

The wind torque, Tg, is actually acquired from and related to the velocity gust value, vg, 

where it is a component of wind velocity, vw, and steady state wind velocity, vs, as per 

equation (3). The wind gust component, vg, is a random process with zero mean together with 

a Davenport spectrum. From here, the Tw is obtained by linearizing equation (4) i.e. wind 

quadratic law for torque T and steady state wind, vs, which produce equation (5).  

gsw vvv +=            (3) 

2, swvkTTorque =                (4) 

gswg vvkT 2=                    (5) 

4. RESULTS AND DISCUSSION 

The output of the simulation is presented and discussed in this section. Tuning PID 

parameters using ZN method somehow is tedious and time consuming. After tuning the Kp 

values, it turned out that the response cannot produce constant oscillation as shown in Figure 

4 (a-d). Thus, the PID parameters are then set using trial-and-error method where Kp value is 

choose by referring to the ZN output that gives better result compared to other values. Thus, 

the obtained parameters value is Kp=20, Ki=0.5 and Kd=3. 

 

						      (4)

       

The wind torque, Tg, is actually acquired from and related to the velocity gust value, vg, 

where it is a component of wind velocity, vw, and steady state wind velocity, vs, as per 

equation (3). The wind gust component, vg, is a random process with zero mean together with 

a Davenport spectrum. From here, the Tw is obtained by linearizing equation (4) i.e. wind 

quadratic law for torque T and steady state wind, vs, which produce equation (5).  

gsw vvv +=            (3) 

2, swvkTTorque =                (4) 

gswg vvkT 2=                    (5) 

4. RESULTS AND DISCUSSION 

The output of the simulation is presented and discussed in this section. Tuning PID 

parameters using ZN method somehow is tedious and time consuming. After tuning the Kp 

values, it turned out that the response cannot produce constant oscillation as shown in Figure 

4 (a-d). Thus, the PID parameters are then set using trial-and-error method where Kp value is 

choose by referring to the ZN output that gives better result compared to other values. Thus, 

the obtained parameters value is Kp=20, Ki=0.5 and Kd=3. 

 

						       (5)

RESULTS AND DISCUSSION

The output of the simulation is presented and discussed in this section. Tuning PID parameters 
using ZN method somehow is tedious and time consuming. After tuning the Kp values, it turned 
out that the response cannot produce constant oscillation as shown in Figure 4 (a-d). Thus, the 
PID parameters are then set using trial-and-error method where Kp value is choose by referring 
to the ZN output that gives better result compared to other values. Thus, the obtained parameters 
value is Kp=20, Ki=0.5 and Kd=3.
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Speed Loop

This speed loop shows the speed response for both PID and optimised PID using slope variation 
method without load. PID-slope variation method showed a more accurate output and faster 
response where it recorded a rise time of 0.09s when compared to PID with 0.3s. 

Figure 5. Tuning PID parameters using ZN method
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Position Loop

Figure 7 shows that the optimisation of PID using slope variation method is able to reach set 
point without overshoot. The analysis of the output is as Table 1.
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Figure 8.  Position response with presence of wind gust disturbance  

      Referring to Figure 8, when wind gust disturbance with different speed amplitude (2 

(wind 1),4 (wind 2) and 6 (wind 3)) introduced to the system, PID-slope variation took a bit 

longer time i.e. difference of about 11.32s to reach 90% of the output (for all speed) 

compared when there is no disturbance. This situation is common as it has to face the 

resistance of the wind. On the other hand, conventional PID controller cannot attenuate wind 
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Referring to Figure 8, when wind gust disturbance with different speed amplitude (2 (wind 
1),4 (wind 2) and 6 (wind 3)) introduced to the system, PID-slope variation took a bit longer 
time i.e. difference of about 11.32s to reach 90% of the output (for all speed) compared when 
there is no disturbance. This situation is common as it has to face the resistance of the wind. 
On the other hand, conventional PID controller cannot attenuate wind gust disturbance and 
produce overshoot to the system, similar as without disturbance. 
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CONCLUSION

This paper presents the analysis of positioning radio telescope positioning by optimizing PID 
controller using slope variation method and conventional PID controller. Results showed that 
the proposed optimization method produces better results and being able to attenuate wind 
gust disturbances.. It also has a tolerable rise time for a 18m radio telescope.
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