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ABSTRACT

A programmable CMOS delay line circuit with microsecond delay range and adjustable duty cycle is 
proposed. Through circuit simulation, approximately 2μs delay range can be achieved using 10-bit counter 
operating at a clock frequency of 500MHz. Utilising synchronous counters instead of synchronous latches 
has significantly reduced the large occupied active silicon area as well as the huge power consumption. 
The generated coarse time delay has shown excellent linearity and immunity to PVT variations. The 
proposed CMOS delay line is designed using a standard 0.13μm Silterra CMOS technology. The active 
layout area is (101 x 142) μm2, and the total power consumption is only 0.1 μW.   
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INTRODUCTION

Recently, CMOS delay lines have gained 
increasing interest because of the growing 
needs for specialised time management 
circuits (Murakami & Kuwabara, 1991). 
For example, in microprocessors, the 
programmable delay line which is situated 
between the microprocessor and its memory 
is used to ensure perfect synchronisation 
of clock signals/data packets at both the 
transmitting and receiving ends. In Time-of-
Flight (ToF) range-finding systems, a delay 
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line is used to delay the light signal emitted from the sensor in order to mimic objects at different 
distances during ToF sensor characterisation (Halin et al., 2011; Kawahito et al., 2007). In 
time-dependent image sensors, the experimental setup for imaging uses an external delay line 
for shifting the imaging window. However, it is desirable to integrate the delay line as part of 
the image sensor system (Kawahito et al., 2013). Moreover, many CMOS delay line circuits 
play a substantial role in many sub-systems of Time-Interval Measurement (TIM) circuits such 
as Time-to-Digital Converters (TDCs) and Digital-to-Time Converters (DTCs) for digitization 
of short-time intervals (Andreani, Bigongiari, Roncella, Saletti, & Terreni, 1999; Rahkonen 
& Kostamovaara, 1993). In all of these applications, programmable wide delay ranges are 
required for proper operation in order to avoid functionality failure of the system.

 On the other hand, obtaining an output digital signal with adjustable pulse-width feature is 
becoming a significant demand by many VLSI systems. This is attributed to two main reasons. 
First, different applications of these VLSI systems require different duty cycles of the input 
signals (Murakami & Kuwabara, 1991). Second, the heavy capacitive load of these VLSI 
systems needs an efficient digital driving circuitry. This driving circuitry is required to maintain 
the duty cycle of the output signal within acceptable boundaries (Kao, Cheng, & You, 2015).

Attaining both programmable wide delay range and adjustable duty cycle can be achieved 
by a delay line circuit in which these two functions are integrated. Accordingly, many designs 
found in the literature have been proposed. Conventional wide-range delay lines use N 
numbers of synchronous latches (D flip-flop) as their delay element with each latch having 
a delay unit of τ (s) which is equal to 1 clock cycle. Only one of these latches is tapped at a 
desired node to generate the delay. For example, to generate a 1µs delay, this type of delay 
line would require 1000 latches operating at 1GHz. The circuit topology for 1000 latches 
would be excessively large on silicon. Moreover, power dissipation would also be high due 
to the clocking of a large number of latches (Jovanovic & Stojcev, 2009). Another example 
is the DS1124 8-bit programmable delay line which uses tapped-delay line architecture. This 
architecture is implemented using an array of buffers connected to a single output line via a 
network of switches. For example, the buffer-based tapped delay line works on the principle 
that propagation delay time is added as the number of buffers in a signal line is increased. 
The DS1124 delay line offers a maximum delay of 64ns (Products, 2009). Although the 
aforementioned architecture is useful for implementing large maximum delays, they lack 
for the adjustable duty-cycle feature. Alternatively, the design proposed by (Murakami & 
Kuwabara, 1991) offers both programmable delay range and adjustable duty cycle. However, 
the achievable maximum delay range is only 20ns, making this architecture non-feasible for 
many high-performance applications.

In order to fill this research gap, this paper presents a new CMOS coarse delay line 
architecture which can generate both programmable microsecond delay range and adjustable 
microsecond duty-cycle control. The new architecture proposes the use of a synchronous 
counter to generate wide delay ranges, instead of a large number of latches. Thus,  power 
consumption is significantly reduced and the occupied area is also minimised. The remainder 
of the paper is organised as follows. The next section presents the architecture of the proposed 
CMOS coarse delay line circuit before discussing  the results and discussions. The last section 
summarises and concludes this paper.
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PROPOSED ARCHITECTURE

The proposed architecture of the coarse CMOS delay line is shown in Figure 1.

Figure 1. Simplified CMOS coarse delay line: (a) block diagram; (b) timing diagram 
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Figure 1 (a) shows the proposed architecture consists of three main blocks, namely Trigger 
Generator, Delay Generator, and Duty-Cycle Controller. Each circuit block performs one main 
function. To explain this, a simplified timing diagram illustrating the functionality of the three 
blocks is shown in Figure 1(b). The input periodic signal triggers the first circuit block which 
is input-pulse Trigger Generator circuit. This Trigger Generator detects the leading edge of 
the input signal PIN which has a period TC. Thereafter, the Delay Generator produces an output 
signal, PD, which is used to enable/disable the Duty-Cycle Controller circuit. The disable period 
is TdC which is the programmable generated coarse time delay, and the enable period is TC – 
TdC. Finally, during TC – TdC period, the Duty-Cycle/pulse-width Controller circuit produces an 
output signal, Pout, whose programmable generated pulse-width is TW and period is TC.

The programmable duty-cycle delayed output pulses are achieved using START and STOP 
pulses. A detailed description of the building blocks in Figure 1 (a) are given below.

Delay Generator Circuit

The function of this circuit, which is the second block in Figure 1 (a), is the generation of a 
programmable wide delay range at the output pulse of the proposed CMOS coarse delay line. 
The Delay Generator circuit’s schematic and timing diagram are shown in Figure 2. As can be 
seen from Figure 2(a), the Delay Generator circuit mainly makes use of a 10-bit synchronous 
counter, a STOP-Pulse decoder with a network of CMOS transmission gates built inside, and 
an SR flip-flop. The Start Pulse, TRG_P’, is synchronised to count zero of the counter. As 
shown in Figure 2(b), when TRG_P’ goes LOW, the SR flip-flop’s output Q changes to HIGH. 
Hence, the counter’s gated clock G.CLK_1 is activated. A custom network comprising 10-
bit CMOS transmission gate is designed to function as a switch connecting the synchronous 

(a)	

(b) 
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counter to a Stop-Pulse Decoder circuit. A 10-bit binary word, TdC[9:0], which is programmed 
at the switch control ports will correspond to the amount of the desired delay. When the clock 
count is equal to the input digital code value, the Stop-Pulse Decoder detects the count that is 
equal to the code and generates the first STOP Pulse, STOP_PD. Consequently, the flip-flop’s 
output Q changes to LOW, the counter’s gated clock is deactivated, and the counter is reset. 
The output of the Delay Generator circuit is PD which is the complement of Q of the SR-flip-
flop. The period of LOW-logic level of PD is approximately the desired output time delay, TdC.

Figure 2. Delay generator circuit: (a) schematic diagram; (b) timing diagram 
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According to Equations (1) and (2) and supposing that the 10-bit counter operates with fclock 
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Controller circuit.

(a)	

(b) 
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Duty-Cycle Controller Circuit

The function of this circuit, which is the third and last block in Figure 1(a), is the generation 
of a programmable duty-cycle/pulse-width at the output pulse of the coarse delay line. The 
Duty-Cycle Controller circuit’s schematic and timing diagrams are shown in Figure 3. It is 
clear from Figure 3(a) that the digital building blocks constructing the Duty-Cycle Controller 
circuit are similar to that of the Delay Generator circuit. The main difference is in terms of their 
functionality depending on the input and output of the building blocks of each circuit. As shown 
in Figure 3(b), when STOP_PD goes HIGH, the SR flip-flop’s output POUT changes to HIGH. 

Accordingly, the counter’s gated clock G.CLK_2 is activated and the counter starts to count. 
A 10-bit binary word, TW[9:0], which is programmed at the control ports of the transmission 
gate will correspond to the amount of the desired pulse-width. When the clock count is equal 
to the input digital code value, the Stop-Pulse Decoder detects the count that is equal to the 
code and generates the second STOP Pulse, STOP_PW. As a result, the flip-flop’s output POUT 

changes to LOW, the counter’s gated clock is deactivated, and the counter is reset. The period 
of the HIGH-logic level of POUT is approximately the desired output pulse-width, TW.

It is worth mentioning that the maximum achievable periods of the generated time delay, 
DRC,max, and the generated pulse-width, TW,max, are restricted to the following relation:
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Figure 3. Duty-Cycle Controller circuit: (a) schematic diagram; (b) timing diagram. 
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Figure 3. Duty-Cycle Controller circuit: (a) schematic diagram; (b) timing diagram. 

 

where TC is the cycle period of the input signal. The condition illustrated in (3) is set to avoid the 
overlap of the programmable width delayed output pulse with the next cycle of the input pulse.

(a)	

(b) 
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SIMULATION RESULTS AND DISCUSSION

The proposed CMOS coarse delay line is designed using a 0.13µm CMOS process. The power 
supply voltage is 1.2V. Referring to Figure 2(a), since the Delay Generator circuit makes use of 
a 10-bit counter operating with 500MHz clock frequency, the values of the generated DRC,max 

and DSC,min are approximately 2μs and 2ns respectively. This is illustrated in Figure 4(a). 

Figure 4. Different output delay and pulse-width values: (a) minimum step and maximum range of the 
generated coarse delays with a minimum pulse-width value fixed for both delay values; (b) two different 
cases of generated delay and pulse-width values
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In Fig. 4 (a), the pulse PIN (black) is the input pulse with a width of 2ns and needs to be 

delayed. On the other hand, pulse POUT1 (blue) is delayed by 2ns which is corresponding to the 

minimum coarse delay step, DSC,min. This is done by setting the digital delay code, TdC [9:0] of 

the delay generator circuit to [0000-0000-01]. The delay 1997ns of the pulse POUT2 (green) 

represents the maximum attainable delay, DRC,max. This is obtained by setting the digital delay 

code to [1111-1001-00]. It should be noted that the delay of the red-coloured pulse, POUT,int, in 

In Figure 4(a), the pulse PIN (black) is the input pulse with a width of 2ns and needs to be 
delayed. On the other hand, pulse POUT1 (blue) is delayed by 2ns which is corresponding to the 
minimum coarse delay step, DSC,min. This is done by setting the digital delay code, TdC [9:0] 
of the delay generator circuit to [0000-0000-01]. The delay 1997ns of the pulse POUT2 (green) 
represents the maximum attainable delay, DRC,max. This is obtained by setting the digital delay 
code to [1111-1001-00]. It should be noted that the delay of the red-coloured pulse, POUT, int, 
in Figure 4(a) is the intrinsic delay of the CMOS coarse delay line’s building circuits. This 
delay whose value is approximately 5ns is always added to the output delayed pulse. However, 
this poses no problems because the added intrinsic delay is a constant offset value that can 
easily be subtracted to obtain the exact desired time delay (Markovic, Tisa, Villa, Tosi, & 
Zappa, 2013). In Figure 4(b), PIN (black) is again the input pulse to be delayed and has a pulse 
width of 2ns. POUTa is output pulse programmed with a delay of 186ns and a pulse width of 
414ns. This is obtained by setting the delay code, TdC[9:0], to [0001-0111-01] and the pulse 
width code, TW[9:0], to [0011-0011-11]. To demonstrate the pulse width changing capabilities, 
pulse POUTb is shown. It is delayed by 999ns and has a pulse width of 998ns. This output is 
obtained by setting TdC[9:0] to [0111-1100-01] and TW[9:0] to [0111-1100-11]. Accordingly, 
the summation of the obtained values of the DRC,max and the TW,max approximately equals to 
1999ns which doesn’t exceed the cycle period 2000ns of the input pulse TC. The linearity of 
the generated coarse time delay, TdC, versus the input digital delay code is also considered and 
analysed as shown in Figure 5.

(a)	 (b)	
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The x-axis shows the Binary-Coded-Decimal (BCD) value of the programmed delay while 
the y-axis shows the simulated output coarse delay. Figure 5 clearly shows a linear relationship 
between the output delay and the input digital delay code as the INL value is only 0.13.

Regarding the effects of both process and environmental (PVT) variations on the coarse 
delay range, Figure 6 can be considered. 

Figure 5. Output coarse time delay, TdC, versus input digital delay code 
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Table 1 shows the technology used and maximum delay range. A comparison between this 
work and the most recently published work by (Han et al., 2016) using 0.13µm technology 
shows that our technique produces the longest delay. This table also shows that only our design 
has the ability to adjust the delayed output’s duty cycle. 

CONCLUSION

It can be concluded that an input signal can be delayed for 2μs delay range in steps of 2ns. 
The duty cycle can also be adjusted in the same range and step provided that the summation 
of the maximum delay range and the maximum pulse width doesn’t exceed the cycle period 
of the input signal. The small layout area and the low power consumption of the proposed 
architecture make it suitable for many high-performance SoC circuits.
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Regarding the effects of both process and environmental (PVT) variations on the coarse 

delay range, Figure 6 can be considered.  

 

 

 

 

 

 

Figure 6. Maximum achievable delay range versus: (a) process corners; (b) temperature and 

supply voltage variations. 
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