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ABSTRACT

Parameter estimation in Generalized Autoregressive Conditional Heteroscedastic (GARCH) model has
received much attention in the literature. Commonly used quasi maximum likelihood estimator (QMLE)
may not be suitable if the model is misspecified. Alternatively, we can consider using variance targeting
estimator (VTE) as it seems to be a better fit for misspecified initial parameters. This paper extends the
application to see how both QMLE and VTE perform under error distribution misspecifications. Data
are simulated under two error distribution conditions: one is to have a true normal error distribution
and the other is to have a true student-t error distribution with degree of freedom equals to 3. The
error distribution assumption that has been selected for this study are: normal distribution, student-t
distribution, skewed normal distribution and skewed student-t. In addition, this study also includes the
effect of initial parameter specification. The analyses are divided into two case designs. Case 1 w, =
0.1, @y = 0.05, B, = 0.85 is when to represent the well specified initial parameters while Case 2 is when
wo =1,a9 = 0,8, = 0 to represent misspecified initial parameters. The results show that both QMLE
and VTE estimator performances for misspecified initial parameters may not improve in well specified
error distribution assumptions. Nevertheless, VTE shows a favourable performance compared to QMLE
when the error distribution assumption is not the same as true underlying error distribution.
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INTRODUCTION

Autoregressive conditional heteroscedastic
(ARCH) model was first introduced by Engle
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forecasting financial market volatility. Clustering means high volatility tends to be followed by
large changes, of either positive or negative signs or vice versa as mentioned by Mandelbrot
(1963). This model is important because it has important roles in several financial applications
such as option pricing, asset allocation and hedging.

Many studies have discussed the ability of the GARCH model in forecasting volatility.
Poon and Granger (2003) have conducted an extensive review of the GARCH model but
their findings were inconclusive which could have been due to the different sample period,
sample frequency, forecast horizon, loss function and the proxy used for the ex post variance
(Wilhelmsson, 2006). As the matter of fact, our study investigate further on these specifications
issue as well as the error distribution assumption selection.

In discussing the GARCH model, two types of distribution have to be considered: the
marginal, also known as the unconditional distribution, and the conditional distribution. As the
GARCH model itself depends on time, it is known that the conditional error distribution has
to follow a certain distribution even though the true underlying error distribution is naturally
unknown. As a result, practitioners always assume the financial datasets under study to follow
certain available distribution. The most preferable assumption is that the financial data follows
a normal distribution because the commonly used estimator, which is a quasi-maximum
likelihood estimator (QMLE), works well under such conditions. However, the financial
data series is actually not normally distributed as shown by Mikosch and Starica (2004), thus
motivating our study to address this issue.

Among the studies that have discussed about the error distribution assumption specification
are Hamilton and Susmel (1994), Franses and Ghijsels (1999), Lopez (2001), and Wilhelmsson
(2006). Hamilton and Susmel (1994) applied Markov switching GARCH model and allowed the
error term to be distributed according to a normal, Student’s-t or generalized error distribution.
By using weekly stock market data, it is found that the GARCH model with a Student’s-t
distribution performs best, followed by the generalized error distribution when the forecast
performance of the one-week horizon is evaluated. On the other hand, Franses and Ghijsels
(1999) drew different conclusion when using weekly European stock market data to evaluate the
out-of-sample forecast. It is found that the GARCH model with t-distributed error is the worst
model. Lopez (2001) checked the performance if GARCH(1,1) model fitted with the normal,
Student’s-t and generalized error distribution on four daily exchange rate series. It is shown
that the performance of the models in-sample and out-of-sample are different and highlighting
the importance of out of sample results as a model selection criteria. The results are mixed
depending on the data series and loss function. Meanwhile, Wilhelmsson (2006) found that
when the models were estimated, allowing for a skewed and excess kurtosis to be taken into
account, it improved the log-likelihood. On the other hand, the out-of-sample results showed
that allowing for skewness does not lead to any improvement over the normal distribution.

Mixed results, as the above example, might be due to several possible specifications
that can be applied to the GARCH model which may lead to misspecification problem. One
particular aspect of error misspecification impact is it will reduce the estimator performance for
GARCH model parameters. Engle and Gonzalez-Rivera (1991) found that QMLE can suffered
a 84% loss of efficiency due to misspecification of the error density. There is one particular
estimator that could provide a good model even though there might be a misspecification which
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is variance targeting estimator (VTE) by Engle and Mezrich (1996). The VTE is a two-step
estimator based on reparameterization of the volatility equation where the intercept is replaced
by the returns unconditional variance.

Francq et al. (2009) detailed the asymptotic properties of the VTE and list the method’s
advantages and disadvantages by studying the performance of VTE and QMLE toward
modelling the simple univariate GARCH(1,1). Besides numerical simplicity, it is found that
VTE can ensure the estimated unconditional variance of the GARCH model is equal to the
sample variance. Hence, it is possible that in case of misspecification when the true underlying
process is not GARCH, it can provide a superior result than QMLE (Francq et al., 2009). It is
useful for prediction over long horizons. The main drawback of VTE is it needs a finite fourth
order moment to retain its efficiency. Vaynman and Beare (2014) confirm it by investigating the
VTE performance under infinite fourth moment with a heavy tailed distribution. It is found that
in heavier tail condition, the finite fourth order moment is likely to be infinite and concluded
that VTE should be used with caution in application when the distribution is heavy tailed.

The VTE may serve as a good alternative to QMLE especially because of its robustness
towards model misspecification and seems to ease the numerical process. The main focus of
this study is the application of VTE toward error distribution assumption misspecification,
addressing gap in the literature. It has to be noted that this study is limited to in-sample model
fitted to evaluate how well VTE performs in this scenario.

MODEL

This section presents GARCH (1,1) parameter estimation using two different estimators which
are QMLE and VTE. GARCH(1,1), QMLE and VTE are explained as below;

Univariate GARCH
For GARCH (1,1), the model that has been used in this research is expressed as:

GARCH (1,1) = { €= \/Zh_f"t (1)
hi = w + apet_q + Bohi—1

where 71; is a sequence of iid with unit variance,w > 0, ay = 0, Sy = 0 and ag + o < 1.

QMLE Estimation

The asymptotic behaviour of QMLE is the reason why. Thus, it is important to use QMLE as
a benchmark to compare the performance of proposed estimator technique. Using GARCH
(1,1), the estimators which need to be estimated are 6§, = (w, &, 8)'. QMLE under assumption
of derived as any measurable solution 8, of 8, = argmaxeg L (9) of where

1
Ly(0) = Ly(0: €4, ..., 6p) = H?:ll—exp(_ %) 2)
2nG? t
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6¢ defined as; 62=67(0) = w + age?_, + oGP

Thus, imnlementing the logarithm gives the maximising of the likelihood equal to
maximising I, with respect to 6,
where,

. ~ ~ ~ €? ~
I, () = %Z?zl 2, where, £, = £,(0) = — (3—% +In crtz)

VTE Estimation

The VTE consists of two steps. First, the unconditional variance of the observed data is
estimated by a moment estimator and next, the remaining parameters are estimated by the
QMLE. The steps are explained below.

Consider GARCH (1,1) as (1) where 6, = (wg, &g, Bo)" is an unknown parameter (7;)
and a sequence of independent in variance of identically distributed (i.i.d) random variables
such that Enf =1 and wy >0, ag >0, B, = 0. Under condition a,+ B, < 1, this model
admits a second-order stationary solution, which the unconditional variance is given by,

wWo @Wo

o, _ —
Yo = 0O (0)0,“01 ﬁO) - 1-ap—PBo o Ko

A reparameterisation of the model with 9y = (¥, @0, Ko)' yields;

€ = \/Em,

he = he—q + Ko(Yo — he—q) + ao(€F-1 — he_q)

and Kg is the speed of mean reversion.

Writing (6) as hy = KoVotao€l 1 + Bohe—q where Ko + &g + Bo = 1, we can interpret
the volatility h; at time t as weighted average of the long-run variance Yo, the square of the
last return €2_, and the previous volatility hy_,- In this average, K, is the weight of the long-
run variance. This reparemetrisation limits; kg, yo > 0, @y = 0 and kg + ay < 1.

Let (€, ..., €,) be a realisation of length n of the unique nonacticipative second-order
stationary solution (€;) to model (1). In this framework, VTE involves (i) reparametrising
the model as in (6), and (ii) estimating Yo by the sample variance using moment estimator
and then A, = (g, k)’ by the QMLE. The QMLE of 6y is denoted by 8}, == (&, &%, B2’
Two consistent estimator of Aq are the sample variance and the QML-based estimator given

n

~2 _ 1 2 2(A*) —
by 65 = ;Z’;l €f (7)and o (Bn) =Tm5
Consider a parameter space A C {(a,x)|a =0,k > 0,a + k < 1}. All the vectors are

considered as column vectors written as row vectors. In particular, we write 9y = (0,4’ 0)’
and at the point 9 = (y, 1) € (0, ) x A, the QMLE of the sample given by

- - 2
L,®) =L, =i exp{— 5727} 3)

J 2m52(9)
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where the 67(9) are defined as recursively, for ¢ > 1, by 62(9) = ky + aeZ, + (1 —k —
a)&2(9) with the initial values €y and &,;2 W) = Gg . Since the parameter A, is estimated by
the sample variance 65, the variance targeting version of the QMLE function is

1 €2 4
——exp(- L) @
27tcr§n tn

where the 0y, = 0, (1) = Kobr+agef_ + (1 — k — @)62, with o2, = 2. AVTE of 1,
is defined as any measurable solution jn of;

L) =L(G7,A) = [Ti=1

A =arg max L, (A) =arg min I, ()

and

- 2 5

@) = 32 Tt i bn = £n (@) = = +In o) ©
METHODOLOGY

A simulation study is considered to investigate the performance of the two estimators, QMLE
and VTE.

First, random variable of &, is simulated under two different underlying error distributions, one
with normal distribution that has a finite moment across all orders and the other under the Student’s-t
distribution with degrees of freedom equal to 3 to represent the infinite fourth order moment.
Datasets are simulated into three different sample size, in which n=500, 1000 and 5000 for
both true error distribution setup.

Next, using “rugarch” package in R-programming, different error distribution assumption is
used to model GARCH (1,1). The distribution assumption is normal, Student-t, skewed normal
and skewed Student’s-t. Skewed distributions for both normal and Student’s-t are considered
to represent the assumption of a heavy tailed error.

Two case designs, Case 1 and Case 2, are established to differentiate initial parameter
specifications. Case 1 is when wgy = 0.1, ¢y = 0.05, §, = 0.85 are used to represent the well
specified initial parameters while Case 2 is when wy = 1,5 = 0,8, = 0 are used as the
representative of misspecified initial parameters.

RESULTS AND DISCUSSION

For Case 1 (well specified initial parameters), both QMLE and VTE under well specified
error distribution (error distribution assumption is the same with the true underlying error
distribution) outperform other distribution assumption setting. This result applies if the true
distribution is normally distributed. At the same time as shown in Table 1 VTE perform
better than QMLE if the error distribution assumption is misspecified. However, the result is
different if the simulated data true underlying error is Student-t distributed. It seems that a well

Pertanika J. Sci. & Technol. 25 (2): 607 - 618 (2017) 611



Abdul Rahim, M. A., Zahari, S. M. and Shariff, S. S. R.

specified error distribution does not help in improving the likelihood values for this scenario.
Estimators under normal and skewed normal assumption perform better than Student-t and
skewed Student-t based on Table 2. Comparing the results in Table 1 and 2, we can conclude
that the performance of both QMLE and VTE is reduced when the true underlying distribution
is heavy-tailed.

For Case 2, QMLE and VTE under misspecification error distribution assumption (error
distribution assumption is different with the true underlying error distribution) perform better
than when the estimators are under well specified condition for both true error distributions
(refer Table 3 and 4.). The VTE only outperforms QMLE when n=500 and n=5000.

Based on the results, there are several important findings as well. One of it is, VTE needs
less processing time than QMLE. Furthermore, for Case 1, the sample size must be greater
than 1000 to produce the significant parameters for all. The significance value must be less
than 0.05 in order to conclude the significance of the parameter.

Under infinite fourth order moment, as suspected, the VTE performance is reduced. The
QMLE outperforms most of the VTE under all levels if we compare the likelihood and standard
error produce for each parameter. But still, VTE produces more significant parameters than
QMLE.
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Variance Targeting Estimator under Misspecified Error Distribution

CONCLUSION

In conclusion, VTE shows promising performance when dealing with the misspecification model
for both initial parameters and error distribution. But under misspecified initial parameters, a
well specified error distribution assumption does not fix the estimators performance suggesting
that these two factors are to be treated differently, but more evidences are needed to arrive
at this conclusion. Future research should examine the performance of these two estimators
in managing volatility forecasting in the presence of leverage effect. Asymmetric GARCH
can also be used in future research. More research is needed on parameter estimation so that
the most efficient model can be built and helping in reducing the risk faced in financial data
series. In addition, out-of-sample forecast evaluation of real datasets might help in finding
more conclusive evidence of VTE effectiveness.
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