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ABSTRACT

This paper proposes a novel double series resonant dc-dc converter with uniform voltage stress on a 
transformer. It consists of a half-bridge inverter with  two power switches (IGBTs), two series resonant 
tank, two high-voltage transformers and a symmetrical voltage multiplier circuit. A symmetrical voltage 
multiplier circuit is connected at the secondary side of the high voltage transformer to generate desired 
high voltage dc output. Due to use of voltage multiplier circuit, the proposed converter requires smaller 
turns ratio of the high voltage transformer, leading to reduction in size and volume of the transformer. 
The proposed converter operates in discontinuous current mode by varying the switching frequency of 
the converter. In a discontinuous current mode operation, all the power switches and output diodes of the 
rectifier circuit turn-on and turn-off under zero current switching conditions. Therefore, it has features 
of low switching losses and possibility of light-load operation. Besides, it costs less and is smaller in 
size compared with conventional double series resonant dc-dc converter. It also has a simple operating 
principle and suitable for high voltage and high power applications. Experimental results confirm the 
proposed converter performs better than the others. 
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INTRODUCTION

High voltage dc power supplies are used 
in electrostatic precipitators, particle 
accelerators, lasers, X-ray systems and 
industrial test equipment (Kulkarni et al., 
2000). A dc high voltage power supply 
normally consists of a dc-ac inverter, high 
voltage transformer (HVT), high voltage 
rectifier and controller, among others. (Jang 
et al., 2010). The HVT is the most critical 
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component in  high voltage power supplies. The design of the HVT is quite different compare 
with the conventional transformer. When HVT is used to produce high output voltage, it has a 
high number of turn’s ratio. Due to this reason, the parasitic capacitance referred to the primary 
side of the transformer is multiplied by the square of two of the number of the turn’s ratio. 
Therefore, a HVT has significant leakage inductance and parasitic capacitance. The parasitic 
components give voltage and current spikes and affect the performance of the converter (Li 
et al., 2007).

To overcome the problems causes by HVT, studies have proposed several types of resonant 
converters. Resonant converters can achieve zero current switching (ZCS) and zero voltage 
switching (ZVS) at the converter and can operate at a higher switching frequency that can 
also reduce the size of the converters (Ye et al., 2008). There are various types of the resonant 
converter topologies such as series resonant converters (SRC), parallel resonant converters 
(PRC) and series-parallel resonant converters (SPRC). All of these converters have their own 
merits and demerits. The SRC is often used in the high voltage power supplies because it is 
free from saturation and has simple frequency control (Pijl et al., 2009), good efficiency both 
at heavy and light load (Pan et al., 2013) and inherent capability of short circuit protection 
(Chakraborty et al., 2002). The SRC that operates in a discontinuous current mode (DCM) are 
mainly used in high voltage application because of advantages when adopting DCM operation 
which is ZCS turn-on and anti-parallel diodes turn-on and turn-off naturally at the power 
switches and low switching losses (Singh et al., 2013). Sze Sing et al., (2012) proposed double 
series resonant high voltage dc-dc converter in order to reduce the conduction loss and improve 
efficiency. However, this converter has certain drawbacks, namely unequal dc voltage stress on 
transformers. It is equal to Vo/2 for transformer T1 while it is zero for transformer T2. Due to 
this reason, transformer T1 need to be designed with larger isolation distance between primary 
and secondary windings leading to larger leakage inductance compared with transformer T2.

This paper proposes double series resonant dc-dc converter with uniform voltage stress on 
HVT-based symmetrical voltage multiplier (SVM). In the proposed converter, the secondary 
windings of the high voltage transformer are connected to the SVM circuit; therefore, the dc 
voltage stress on the HVTs is uniform. It is equal for both transformers, T1 and T2, respectively 
because of their common grounding. Therefore, transformer T1 and T2 can be designed with 
same isolation distance between primary and secondary windings so that the value of leakage 
inductance is same for both transformers, T1 and T2. Furthermore, the proposed converters  
perform better. 

CIRCUIT DESCRIPTION AND PRINCIPLE OF OPERATION

The proposed double series resonant dc-dc converter with uniform voltage stress on high 
voltage transformers is shown in Figure1. The proposed converter circuit consists of half 
bridge inverter  that has two power switches, S1 and S2, two resonant capacitors, Cr1 and Cr2, 
two high voltage transformers, T1 and T2, SVM circuit and output load resistor. The leakage 
inductances, Lr1 and Lr2, are of the primary windings, T1 and T2 of the HVTs respectively. The 
inverter circuit is to invert the lower dc voltage from the input voltage into ac voltage. Power 
switches S1 and S2 operate in complementary fashion with interleaved half switching cycle. The 
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resonant capacitors, Cr1 and Cr2 are connected in series with the leakage inductances, Lr1 and 
Lr2 respectively. Therefore, two series resonant tank circuits are formed which are resonant 
tank circuit-1 and resonant tank circuit-2. Resonant tank circuit-1 consists of Lr1 and Cr1, and 
resonant tank circuit-2 consists of Lr2 and Cr2. The main purpose of the HVTs is to boost the 
secondary voltage to desired levels and also to obtain the electrical isolation between primary 
and secondary side of the HVT circuit. The secondary windings of the transformer are connected 
to the m-stage of the SVM circuit. The secondary voltage of the HVTs is multiplied by m-stage; 
therefore, maximum output voltage of the SVM circuit is nearly Vo=2mνs(max).

Figure 1. The proposed double series resonant dc-dc converters with uniform voltage stress on high voltage 
transformers
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Here, Lr is the leakage inductance and Cr is the resonant capacitor. In the proposed converter, 

the two resonant capacitors are connected in series to the input dc source through primary 

windings, so that the voltage stress on these capacitors is reduced to half compared with 

conventional full-bridge inverter high-voltage dc-dc converter. 
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Here, Lr is the leakage inductance and Cr is the resonant capacitor. In the proposed converter, 
the two resonant capacitors are connected in series to the input dc source through primary 
windings, so that the voltage stress on these capacitors is reduced to half compared with 
conventional full-bridge inverter high-voltage dc-dc converter.
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ANALYSIS OF STEADY-STATE OPERATION

The key steady-state waveforms of the proposed converter for one complete switching cycle are 
shown in Figure 2. There are six modes of operation in one switching cycle and the equivalent 
circuits of these modes of operation are shown in Figure 3. To simplify the analysis, following 
assumptions are made:

•	 All the components are assumed to be identical by Lr=Lr1=Lr2 and Cr=Cr1=Cr2.
•	 The turns ratio of the transformer is k=NP1/NS1=NP2/NS2 of the transformers, T1 and T2 

respectively. 

The output voltage  in the primary side of the transformer is obtained by dividing secondary 
voltage with transformer turn’s ratio, k and it is assumed that capacitors of the voltage multiplier 
circuit are large enough so that voltage ripples across these capacitors are significant in a 
steady-state operation.

Figure 2. The key steady-state waveform of the proposed resonant converters over one switching cycle
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Mode 2 [t1 ≤ t ≤ t2]: At the beginning of this mode at time t=t1, resonant currents, iLr1 and iLr2 

start flowing though the anti-parallel diode, D1, of the power switch, S1. During this mode, the 
iLr1 and iLr2  swings sinusoidally in the positive and negative directions respectively. Therefore, 
S1 is turn off with ZCS and ZVS conditions. This mode ends when the iLr1 and iLr2 reach zero 
at t=t2. The equivalent circuit related to this mode of operation is shown in Figure 3(b). The 
equations of iLr1(t), vCr1(t), iLr2(t) and vCr2(t) during this mode are given by
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Mode 3 [t1 ≤ t ≤ t2]: At time t=t2, the power switch, S1 are turn-off and the resonant 

currents, iLr1 and iLr2 are zero. As a result, the voltages across resonant capacitors vCr1 and vCr2 

will be same as at time t=t2. The minimum duration of this mode must be greater than zero to 

ensure DCM operation of the converter. Therefore, no energy transfer occurs from source to 

load during this mode. The equivalent circuit related to this mode of operation is shown in 

Figure 3(c). The equations of vCr1(t) and vCr2(t) during this mode are given by 
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Mode 3 [t1 ≤ t ≤ t2]: At time t=t2, the power switch, S1 are turn-off and the resonant currents, 
iLr1 and iLr2 are zero. As a result, the voltages across resonant capacitors vCr1 and vCr2 will be 
same as at time t=t2. The minimum duration of this mode must be greater than zero to ensure 
DCM operation of the converter. Therefore, no energy transfer occurs from source to load 
during this mode. The equivalent circuit related to this mode of operation is shown in Figure 
3(c). The equations of vCr1(t) and vCr2(t) during this mode are given by
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Mode 4 [t2 ≤ t ≤ t3]: This mode begins at time t=t3 when the resonant currents, iLr1 and iLr2 begin 
to flow through the power switch, S2. The iLr1 is swings sinusoidally in the positive direction 
and the iLr2 in the opposite direction. Therefore, the energy stored in the Lr2 and Cr2 during 
mode is transferred to the load. This mode ends when the iLr1 and iLr2 becomes zero at time 
t=t4. The equivalent circuit for this mode is illustrated in Figure 3(d). The equations of iLr1(t), 
vCr1(t), iLr2(t), and vCr2(t) during this mode are given by
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Mode 5 [t3 ≤ t ≤ t4]: At time t=t4 when the resonant currents, iLr1 and iLr2 begin flowing 

through anti-parallel diode, D2, of the power switch, S2, in the reverse direction. In this mode, 

S2 is turn-off under ZCS and ZVS conditions. In this mode, both resonant tanks transfer 

energy to the load. This mode ends when the iLr1 and iLr2 becomes zero at time t=t5. The 

equivalent circuit related to this mode of operation is shown in Figure 3(e). The equations of 

iLr1(t), vCr1(t), iLr2(t), and vCr2(t) during this mode are given by 
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Mode 6 [t4 ≤ t ≤ t5]: This mode is same with Mode 3, so the power switch, S2 is turn-off 

and the resonant currents iLr1 and iLr2 are zero. As a result, the voltages across resonant 

capacitors vCr1 and vCr2 will be constant as at time t=t5. The equivalent circuit is shown in 

Figure 3(f) and equations of vCr1(t) and vCr2(t) are given by 
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Figure 3. The equivalent circuit of the proposed resonant converter for each operation modes
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RESULTS AND DISCUSSIONS

A prototype of the proposed resonant converter was built and tested to validate the feasibility of 
the converter. The design specifications of the experimental prototype are as follows: Vin=100 
V, k=5, fr=75 kHz, Ro=20 kΩ, Cr=Cr1=Cr2=110 nF, and Lr=Lr1=Lr2=46 µH. Figure 4(a) and 
4(b) shows the waveforms of the gate signal of the power switches VGE1 and VGE2 and resonant 
currents, iLr1 and iLr2 for switching frequency of 25-kHz and 35-kHz respectively. It can be 
observed that when the power switch, S1 is turned on, iLr1 and iLr2 flow sinusoidally in the 
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negative and positive direction respectively. When power switch S2 is turned-on, then iLr1 and 
iLr2 flow in the positive and negative direction respectively. Thus, the both resonant currents 
are inverted replica of each other. From the waveforms, power switches S1 and S2 are turned 
ON and OFF at ZCS. Thus, the switching losses are negligible. 

Figure 4. Experimental waveforms of the gate signal of the power switches, VGE1 and VGE2 and resonant 
currents, iLr1 and iLr2 for switching frequency (a) 25-kHz and (b) 35-kHz respectively
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capacitors at the Figure 6(a) is smaller compared with Figure 6(b) because of the low switching 
frequency. Besides, the average resonant voltage  Cr1 and Cr2 is equal to the Vin/2 as shown in 
Figures 6(a) and 6(b).
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Figure 6. Experimental waveforms of the resonant voltages, VCr1 and VCr2 and resonant currents, iLr1 and iLr2 
for switching frequency (a) 25-kHz and (b) 35-kHz respectively

CONCLUSION

A double series resonant dc-dc converter with uniform voltage stress on high voltage 
transformers suitable for high output voltage applications has been proposed in this paper. 
Symmetrical voltage multiplier (SVM) is used to convert ac output voltage/current at the 
secondary transformer to dc ones. The SVM facilitates the decrease in the diode ratings, 
isolation requirement, and transformer turns ratio, as well as facilitates an  increase in the 
total output filter capacitance. The input voltage of 100-V boosts up to 1020-V for switching 
frequency, 35-kHz with the resonant currents which is 4.2-A in this proposed converter. The 
proposed converter has shown lower switching losses because the power switches and output 
diodes operate with ZCS condition under DCM operation.
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