
Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2018 Universiti Putra Malaysia Press.

ARTICLE INFO

Article history:
Received: 06 December 2016
Accepted: 27 September 2017

E-mail addresses:
shahidanwar.safi@gmail.com (Shahid Anwar),
fadli@ump.edu.my (Mohamad Fadli Zolkipli),
zakirainayat@uetpeshawar.edu.pk (Zakira Inayat),
odili_julest@yahoo.com (Julius Odili),
sunnygul1@gmail.com (Mushtaq Ali),
jasni@tmsk.uitm.edu.my (Jasni Mohamad Zain)
*Corresponding Author

Review Article

Android Botnets: A Serious Threat to Android Devices

Shahid Anwar1*, Mohamad Fadli Zolkipli1, Zakira Inayat2,3, Julius Odili1,
Mushtaq Ali1 and Jasni Mohamad Zain4

1Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, 26300 UMP,
Gambang, Malaysia
2Department of Computer Science, University of Engineering and Technology Peshawar, Peshawar 2500,
Pakistan
3Center for Mobile Cloud Computing Research, University of Malaya, 50603 UM, Kuala Lumpur, Malaysia
4Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 UiTM, Shah Alam,
Selangor, Malaysia

ABSTRACT

Android devices have gained a lot of attention in the last few decades due to several reasons including
ease of use, effectiveness, availability and games, among others. To take advantage of Android devices,
mobile users have begun installing an increasingly substantial number of Android applications on their
devices. Rapid growth in many Android devices and applications has led to security and privacy issues.
It has, for instance, opened the way for malicious applications to be installed on the Android devices
while downloading different applications for different purposes. This has caused malicious applications
to execute illegal operations on the devices that result in malfunction outputs. Android botnets are one
of these malfunctions. This paper presents Android botnets in various aspects including their security,
architecture, infection vectors and techniques. This paper also evaluates Android botnets by categorising
them according to behaviour. Furthermore, it investigates the Android botnets with respect to Android
device threats. Finally, we investigate different Android botnet detection techniques in depth with respect
to the existing solutions deployed to mitigate Android botnets.

Keywords: Android botnets, malware, detection
techniques, DDoS attacks, mobile security

INTRODUCTION

Mobile devices (mobile devices/android
devices are used interchangeably in this
article) are gaining popularity in the 21st

century (Narudin, Feizollah, Anuar, & Gani,

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

38 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

2016). These devices offer a host of advanced capabilities and ample storage of large volumes
of personal and confidential data (Peng, Yu, & Yang, 2014). Nowadays, most mobile devices
offer more computing capabilities and memory storage than many personal computers did a
few years back. According to former Android boss Andy Rubin, “There should be nothing that
users can access on their desktop that they cannot access on their cellphone” (Rubin, 2008). Any
mobile device has three core features, such as Applications, Storage and Connectivity. These
key features make Android devices an attractive tool for malware writers to attack organsation/
individual devices. While protecting stored data on these devices is crucial against today’s
threats, most mobile devices use the Android operating system due to its open nature. Android
provides a full set of software for Android devices including operating system, middleware
and key Android applications (Sears, 2007). The open nature of Android devices make these
devices an attractive source for cybercriminals and over the years there has been a number
of threats faced by mobile devices such as spyware, botnet, vulnerable applications, privacy
threats, drive-by-download, phishing scams, malware, network exploits, browser exploits and
Wi-Fi sniffing (Fossi et al., 2011; Inayat, Gani, Anuar, Khan, & Anwar, 2016), Botnet is one
of the most dangerous threats faced by mobile devices recently.

Malware is used to damage Internet-connected devices and gather sensitive information
from individuals or it uses spyware for accessing the most private information on the infected
device (Sharma, Chawla, & Gajrani, 2016). Spyware gathers all this information specifically
for advertising purposes (Sheta, Zaki, El Salam, & Hadad, 2015). Privacy threats can be
caused by those Android applications that may not be malicious by nature but use sensitive
information obtained illegally from unsuspecting Android users. Vulnerable applications
are those that contain deficiencies that may cause malicious attacks and malicious activities.
Phishing scams are those that use the victim’s device emails for sending the virus infected links
to the Internet-connected devices (Naraine, 2012). In drive-by-download, the infected devices
download an application when they access a website. While the browser-exploits benefits from
the vulnerabilities in mobile device web browsers or applications launched by the browser
such as flash player, PDF reader and much more, in network exploits, cybercriminals take
advantage of Android operating system flaws for criminal activities (Naser, Zolkipli, Majid, &
Anwar, 2014). When the data are transferred from one device to another connected by Wi-Fi
as many applications do not use proper security rules, this results in data obstruction known
as Wi-Fi sniffing. In this article, we focus on the Android botnet.

A botnet (Robot Network) is a type of malware that enables the infected devices to
perform criminal activities according to the botmaster’s instructions (Anwar, Zain, Inayat, Haq,
Karim, & Jaber, 2016; Naser et al., 2014; Peng et al., 2014). A malicious Android application
is installed in a susceptible host that is capable of carrying out a series of different harmful
activities to the end user according to the botmaster’s instructions. These applications can be
downloaded to the victims’ devices using different methods. The most common ways to infect
a victim’s device includes access to the infected websites, drive-by-download, spam emails,
viral mechanism and much more (Anwar, Zain, Zolkipli, Inayat, Khan, Anthony, & Chang,
2017; Karim, Shah, Salleh, Arif, Md Noor, & Shamshirband, 2015). Once an end-user’s device
is infected with malicious software, it receives instructions from the cybercriminal (botmaster)
through a command and control server using communication channels. Botmaster is the entity

Android Botnets: A Serious Threat to Android Devices

39Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

that performs criminal activities from these bot devices, while a communication channel is
the way through which a botmaster can communicate with the C&C server and bots. A bot
can be a servant and a client as well at the same time. It can propagate themselves to infect
vulnerable hosts (Silva, Silva, Pinto, & Salles, 2013).

To the best of our knowledge, this paper aims to present the Android botnet from first
appearance. We aim to guide interested readers and researchers on Android botnets and
detection techniques. This paper organises the Android botnet detection techniques with respect
to their benefits and limitations; understanding this information can improve Android botnet
detection techniques.

The key contributions of this survey paper are:

- It provides up-to-date information on mobile device threats: We provide comprehensive
details of the possible threats to mobile devices. We have also categorised these threats in
sub-groups according to their nature.

- It provides exhaustive information about Android botnets: We provide in-depth information
about Android botnets, their background and timeline.

- We provide in-depth information about Android botnet detection techniques: This paper
presents detailed information about Android botnet detection techniques. We explain these
techniques regarding their benefits and limitations. These limitations are also explained
in more detail in table form.

- We introduce future research challenges: We suggest potential research areas for Android
botnet detection techniques and we highlight the challenges present in Android botnet
detection techniques as well.

Classification of Mobile Device Threats

There are diverse types of threat to mobile devices that may badly affect mobile devices, such
as viruses and spyware that can infect personal computers (PC). These threats can be divided
into four broad categories: Application-Level, Web-Level, Network-Level and Physical-Level
(see Figure 1).

Application-Level Threats

Application-level threats are based on the Applications, which are the core feature of every
mobile device. These threats appear to be the most widely discussed threats in the literature,
which presents application-level threats as the most widely discussed threat. Since the
applications that run on these mobile devices are available from third-party markets, it is
clear that they can be target vectors for mobile device security breaches (Faruki et al., 2015).
Malware are Android applications that perform malicious activities can inject malicious
codes into mobile device that send unsolicited messages and allow an adversary the ability to
remotely control the device.

Malware. Malware is short for ‘malicious software’. This is specifically developed to damage
machines on which they are executed or the network on which it communicates (Inayat, Gani,

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

40 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Anuar, Anwar, & Khurram Khan, 2017; Preda, Christodorescu, Jha, & Debray, 2008). Malware
is mostly installed on victims’ devices to perform illegal activities without the knowledge of the
owner. The range of malware varies; it can be as simple as pop-up advertising or so dangerous
that it causes machine invasion or damage. Stealing owner-sensitive credentials and infecting
new vulnerable devices are the main targets of malware. The most common malware is found
as financial, crypto locker and advertisement malware (Anwar, Zain, Zolkipli, Inayat, Jabir,
& Odili, 2015).

Financial malware is developed for scanning mobile devices to gather financial information,
while crypto locker malware is used in cyber-criminal activities. According to the Symantec
report published in 2013, ransomware evolves regularly in the Android operating system.
Compared with other OS on mobile devices, Android is most frequently attacked because of its
open nature (Narudin et al., 2016; Odili, Kahar, & Anwar, 2015; Teufl et al., 2013). Ransomware
allows cybercriminals to hijack the victim’s device, encrypt the victim’s private files and then
demand a ransom from the victim in order for the files to be released (Anwar et al., 2017).
Malicious spyware is considered a significant threat to the confidentiality of mobile devices
(Sheta, Zaki, El Salam, & Hadad, 2015). It covertly collects confidential data from the infected
device and sends it to the cybercriminal (Botmaster) through the user’s Internet connection
without the owner’s knowledge. These applications mostly contain freeware or shareware,
which can be downloaded from third-party markets. Adware is another type of malware. It is
a software package that automatically displays related advertisements to the mobile device
users based on the user’s pattern of web surfing. These advertisements may be present during
the installing phase of any Android application, or they are present when an end-user is using
these applications. This adware engages in collecting confidential information, frequently by
user consent, while stealing this personal information for covert harmful activities.

8

Mobile Device Threats

Web-LevelApplication-Level Network-Level Physical-Level

Malware Phishing Scams

Drive-by-Download

Browser Exploits

Network Exploits

Wi-Fi Sniffing

Bluetooth Sniffing

NFC SniffingBotnets

Figure 1. Threats to mobile device security.

Web-Level Threats

The security and privacy threats to mobile devices from webs happens normally. The most

dangerous web-level threats are phishing scams, drive-by-download and browser exploits.

Phishing scams are the key web-level threat, which uses email or other social media apps to

send an unwitting user links to a phishing website designed to trick users into providing

sensitive information such as user credentials. Phishing is one of the top seven security

threats identified by the Kaspersky lab (Kaspersky, 2015). However, botware is the most

dangerous threat to mobile devices nowadays. These are software programmes created to

automatically perform specific operations.

Phishing scams. Phishing refers to the criminal action of generating a replica of web pages

that exist to fool a mobile user entering private, extremely sensitive credentials, financial or

online banking information and passwords (Alta, Loock, & Dabrowski, 2005). Phishing is a

technique of attacking to obtain personal information from a mobile device user and is the

main cause of various problems encountered by Internet users. This technique can cost the

victim financially. Phishing is performed through instant messenger phishing, voice phishing,

and flash phishing (Dunne, 2006; Milletary & Center, 2005). After launching a phishing

attack on an individual or an organisation, the employees of the organisation handle the

customer when he calls after losing his money.

Figure 1. Threats to mobile device security

Web-Level Threats

The security and privacy threats to mobile devices from webs happens normally. The most
dangerous web-level threats are phishing scams, drive-by-download and browser exploits.
Phishing scams are the key web-level threat, which uses email or other social media apps

Android Botnets: A Serious Threat to Android Devices

41Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

to send an unwitting user links to a phishing website designed to trick users into providing
sensitive information such as user credentials. Phishing is one of the top seven security threats
identified by the Kaspersky lab (Kaspersky, 2015). However, botware is the most dangerous
threat to mobile devices nowadays. These are software programmes created to automatically
perform specific operations.

Phishing scams. Phishing refers to the criminal action of generating a replica of web pages
that exist to fool a mobile user entering private, extremely sensitive credentials, financial or
online banking information and passwords (Alta, Loock, & Dabrowski, 2005). Phishing is a
technique of attacking to obtain personal information from a mobile device user and is the main
cause of various problems encountered by Internet users. This technique can cost the victim
financially. Phishing is performed through instant messenger phishing, voice phishing, and
flash phishing (Dunne, 2006; Milletary & Center, 2005). After launching a phishing attack on
an individual or an organisation, the employees of the organisation handle the customer when
he calls after losing his money.

Drive-by-Download. A drive-by-download refers to potentially harmful software code that
is installed on a person’s computer without the user’s permission; the user may not even be
aware that the software has been installed. Drive-by-downloads are a form of malware typically
found on compromised web pages. By simply ‘driving by’, or visiting the web page, the drive-
by-download begins to download and is then installed in the background on the computer or
mobile device without alerting the user (Naraine, 2012).

Browser exploits. This is a malicious code that uses a piece of software or operating
vulnerabilities to breach the security of the browser. Browser exploits perform these malicious
activities without informing the owner of the device.

Botnets. Short for robot network, botnet, is the network of Internet-connected infected-devices
(bots) under the control of a botmaster (cybercriminal) to perform cyber-criminal activities
without the knowledge of the device owner (Anwar, Mohamad Zain, Zolkipli, & Inayat, 2014).
There are two types of botnet: traditional botnets and mobile botnets. This paper focusses on
mobile (Android) botnets. The purpose of Android botnets will most likely be similar to those
of existing traditional botnets (e.g. providing means of DoS, DDoS and spam distribution);
however, the targets are different (Enck, Ongtang, & McDaniel, 2009). In mobile botnets, the
targets are mobile devices.

A common botnet having thousands of infected victims is called a bot (zombie). The
botmaster sends instructions to all online bots to send queries to a particular system/server
(Mirkovic & Reiher, 2004). By attacking a new victim from thousands of different bots in a
botnet, the DoS (DDoS) is distributed. In a DDoS attack, the bot becomes harder to detect
and it is difficult for cyber law enforcement to prevent DDoS attacks. Some DDoS attacks
include UDP flood attacks, Zero-day DDoS attacks, Sync flood attacks, ICMP flood attacks,
Slowloris and Ping of Death (LulzSec, 2011; Zang, Tangpong, Kesidis, & Miller, 2011). DDoS
attacks are performed using diverse types of tool, such as agent- and IRC-based tools. These

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

42 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

attacks can be detected through screening of the time interval of requests and bandwidth size.
Some DDoS attacks, such as Zero-day attacks, are unknown or new and thus, have no patch
yet. The term DDoS is well-known among hackers as dealing with Zero-day vulnerabilities
is a common activity.

Network-Level Threats

Any mobile device has three core features: applications, storage and connectivity. Network-
level threats can occur due to mobile device connectivity with the cellular/mobile networks,
local wireless networks or near field-communication (NFC). Network exploits, Wi-Fi sniffing,
Bluetooth and NFC are the main types of network-level threats.

Network exploits. Network exploits take advantage of flaws in the mobile operating system
or other software that operates on local or cellular networks, such as an International Mobile
Subscriber Identity (IMSI) catcher. Once connected, they can intercept data connections and
find a way to inject malicious software on users’ phones without their knowledge.

Wi-Fi sniffing. Wi-Fi sniffing seizes data when they are traveling between the device and
the Wi-Fi access point. Most Android applications do not use proper security measures while
sending unencrypted data across the network. A cybercriminal can easily read the data as they
travel. Public sites such as coffee shops, restaurants and bookstores may have WPA2, but it is
likely that anyone with the password can decrypt your packets.

Bluetooth. People who leave BT on all the time leave themselves vulnerable to pairing from
nefarious devices and the uploading of spyware. Blue jacking is an older-style attack in which
a Bluetooth enabled device that is active is used by someone else. Blue jacking refers to the
sending of unsolicited data (vCards etc.) to open Bluetooth listeners in the area. It has more
recently been used for marketing, but many more modern smartphones are less vulnerable
to Bluetooth stack exploits. This can lead to phishing attempts and the spread of malware or
viruses.

Near field communication (NFC). Advanced mobile devices contain near field communication
(NFC) as a medium for communication. NFC is a newly developed wireless technology that
provides communication between two mobile devices, both of which must contain NFC tags
using short-range radio waves. NFC enables the exchange of images, apps and other data
between two devices without first pairing them. For this purpose, both devices use a feature
that Google calls Android Beam (Sauter, 2013), while Beam is Android’s trademark for NFC
when the protocol is used for device-to-device communication. In the NFC communication,
only two devices can communicate, such as the initiator and target. The initiator sends data,
while the target receives them; both devices are active during the communication, consuming
their own battery power. NFC provides extra opportunities to the attacker to compromise NFC-
enabled devices, such as Wi-Fi and Bluetooth. So far, mobile threats are still mainly aimed at
consumers rather than at enterprises.

Android Botnets: A Serious Threat to Android Devices

43Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Physical-Level Threats

Physical-level threats are more important than other mentioned threats. Since mobile devices
are small, portable and valuable, it makes their physical security more important. Stealing and
misplacing devices are the common issue among users of these devices. These devices are
valuable not only because they are resold in the black market, but more importantly, because
they contain sensitive organisational and personal data. Most mobile device users use their
phone for banking, social communication and much more, while end-user are always connected
to these accounts, which makes the stolen or misplaced phone more vulnerable for criminal
activities. Furthermore, a lost or stolen device can be used to gain access to secret data stored
on it.

Android Botnets as a Universal Threat for Mobile Device Users

The dramatic increment in the number of mobile device users has attracted cybercriminals to
develop malicious applications (Narudin et al., 2016). In addition, mobile devices contain more
sensitive information about the owners; this tends to be taken lightly by security organisations
and individuals. A mobile device can be misused in many ways. The botnet is one of the most
successful methods by which a mobile device can be misused for malicious activities against
organisations or individuals.

Android Botnet as a Threat for Organisations

Android botnets are mostly used for organised economic fraud. Today, world economies must
deal with a broad range of botnets that have caused a considerable amount of damage. About
USD7.1 million was estimated lost due to click fraud performed by botnets using DDoS attacks
in 2007 (Plohmann, Gerhards-Padilla, & Leder, 2011). It is very hard to detect click fraud, as
these target legitimate users while they are surfing websites. According to a published report,
on every USD3 million spent on digital advertisement, USD1million is spent on click fraud.
Another statistics report showed that digital advertising hit the highest level of fraud in 2015,
which was estimated at USD27.5 billion (Slefo, 2015). According to Kaspersky’s monitoring
results, 35,000 malicious mobile programmess were found at the end of 201. These malicious
programmes steal sensitive data from the end-user devices, consume account balances while
running digital advertisements, which is pushed by these malicious programmes (Christian
& Maria, 2013). Kaspersky released security threat statistics for the year 2015, in which they
blocked 0.8 billion attacks and used a list of 6.5 million unique host, to from web resources
located in various countries around the world (LAB, 2015).

Android Botnet as a Threat for Individuals

Mobile devices offer advanced capabilities, with more storage capacity that can store
organisational and confidential data of end users (Peng et al., 2014). Furthermore, advanced
mobile devices offer more computing capabilities than many of personal computers offered a
few years back. A mobile device has three main features, such as Android applications, storage,
and connectivity with internet or cellular network (Rubin, 2008). Once a mobile device becomes

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

44 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

part of the Android botnet, botmasters attempt to take complete control of it to enable the
botnet creator to perform illegal activities without the knowledge of the end user. After taking
control of the mobile device, a botmaster can access everything from the compromised device.
Furthermore, sending texts and making phone calls to premium numbers can be performed with
these compromised devices. Botmaster can access contacts and messages on the compromised
devices as well. These botnets take advantage of unpatched Android application updates.

Android Botnet Security

As smartphones are the largest category of Android devices, they have become an essential
tool in how people communicate with one another. Each Android device has three key features:
Applications, online and storage. Android applications are one of the core features of Android
devices. They enable users to play games, read the news, connect with others, check weather
conditions, perform online banking, read maps and navigators and perform many other
functions. These applications are available from third parties like Google Play Store and
Amazon (Silva et al., 2013). It may be a primary feature for many end users.

The core function of the Android device is to enable the user to make calls, take
photographs, send text or picture messages and access personal data storage. It also allows
the developer to develop richer applications. The developer may also access the user’s address
book, SMS content, GPS location data, movement data by G-sensor and accelerometer and
even information in other applications. The Android does not differentiate between the phone’s
core applications and third-party applications. However, such applications from third parties
can access personal/confidential information in the Android device very easily. These core
features of Android devices make these devices an easy target for cybercriminals.

In this modern era, trojanised Android applications are a common infection method of
Android devices. This is most often targeted by cybercriminals who use different types of
malware. Botnet, a dangerous malware, compromises Android devices such as smartphones,
smartware, tablets and notebooks, attempting to get full access to the device and provide
control to the botmaster. The data found on Android devices include text messages (SMS/
MMS), contacts, call logs, e-mail messages (Gmail, Yahoo), chats, location coordinates using
the global positioning system (GPS), photographs, videos, web history, search history, driving
directions, Facebook and Twitter information, music collections and other information. These
third-party applications provide a simple and easy means of accessing content and services of
Android devices. It is important to be aware of how to use these third-party applications safely
and securely. Android botnets are able to spread themselves by sending copies to compromised
devices.

The criminal activity the Trojan-Ransom.Android-OS.Small family is a multifunctional
ransomware Trojan performed by an Android botnet. After connecting to the botnet army, it
receives commands from the command and control channel and performs the activities received
from them. Once run, it asks for the victim’s device’s admin rights and loads information
about the victim’s device to a malicious server. It can be an international mobile equipment
identity (IMEI), international mobile subscriber identity (IMSI), device model, brand and
phone number or other information.

Android Botnets: A Serious Threat to Android Devices

45Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

In addition, the Trojan is registered in the Google cloud messaging (GCM) system. As
such, the Trojan can receive commands from both the C&C server and via GCM. With this
information, it can perform the commands shown in Table 1.

Table 1
Commands between C&C server and trojan

Command Description
START Start the main service of the Trojan
STOP Stop the main service of the Trojan
RESTART Restart the main service of the Trojan
URL Change the C&C address
MESSAGE Send an SMS to a specified number with a specified text
UPDATE_PATTERNS Update the rules for processing incoming SMS
UNBLOCK Disable the device administrator’s rights
UPDATE Download a file from the specified URL and instal it
CONTACTS Send out a specified SMS to all contacts from the list of contacts
LOCKER_UPDATE Update the text with the ransom demand
LOCKER_BLOCK Block the device
LOCKER_UNBLOCK Unblock the device
CHANGE_GCM_ID Change the GCM id

The main idea behind botnets is to control interaction in Internet Relay Chat (IRC) chat rooms.
They are able to interpret simple commands, provide administration support, offer simple games
and other services to chat users and retrieve information about operating systems, logins, email
addresses and aliases, in addition to other information (Silva et al., 2013). The first known
iKee.B Mobile botnet was found in 2009. It was discovered to be using the Command and
Control Server in the iPhone. This botnet is able to propagate itself and to instal third-party
applications on the end-user’s phone without user information (Peng et al., 2014).

Table 2 shows the timeline of Android botnets with respect to their first appearance in terms
of year, platform, instruction, categories and C&C type in addition to other related information.

Table 2
Android Botnet timeline

Year Name C&C Type Botnet Instructions Criminal Activities by
Default

Requires Permission

2010 SMSHowU.A SMS Leak location, GPS and
maps through SMS

None N/A

2011 Geinimi.A HTTP ON, OFF, ADD or Set or
Rem Sender

IMEI, IMSI, SIM, SIM
state, Build info, GPS,
Board, Brand, CPU type,
User, Software version, SIM
country, SIM operator

N/A

DroidKungFu.A HTTP Leak location, GPS and
maps through SMS

Send sensitive data,
execDelete, Exploit known
vulnerabilities to gain root,
Instal APK, execOpenUrl,
execStartApp

N/A

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

46 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

2012 Fjcon.A HTT Phone ICCID; Financial, Propagation of
malware

N/A

Rootsmart HTTP action.host start; action.
boot; action.shutdown;
action.install; action.
installed; action.check
live;action.download apk;

IMEI, IMSI, cell ID,
location area code, mobile
network code

N/A

TigerBot.A SMS Change APN; Notify of
SIM change; Kill running
process

IMEI N/A

2013 Stealer.B HTTP and
SMS

HTTP: time; sms; send;
delete; smscf SMS:
ServerKey +001; +002;
anything

IMEI, IMSI, contacts READ_SMS;
INTERNET;
RECEIVE_BOOT_
COMPLETED; READ_
PHONE_STATE;
RECEIVE_SMS;
READ_CONTACTS;
SEND_SMS;
WRITE_EXTERNAL_
STORAGE

Tascudap.A HTTP time; sms; send;
delete;smscfSMS:
ServerKey + 001; 002;
anything

Specify time when trojan
should next contact C&C,
send SMS, delete SMS
from phone, selective SMS
hiding, start application,
forward received SMS,
update

READ_SMS;
ACCESS_NETWORK
INTERNET;
READ_PHONE_STATE;
RECEIVE_SMS;
READ_CONTACTS;
SEND_SMS;
WRITE_EXTERNAL_
STORAGA;

BadNews.A HTTP news; showpage; install;
showinstall; iconpage;
coninstall; newdomen;
seconddomen; stop;
testpost

Propagation of possible
malware; download and
instal APK

RECEIVE_BOOT_
COMPLETED; SEND_
SMS;
RECEIVE_SMS;
INTERNET;
ACCEESS_INTERNAL_
MEMORY;
ACCESS_EXTENAL_
MEMORY;

Spamsold.A SMS Display same icon on the
menu, retain the image
same but the name may
change, instal APK once
clicked

Sends SMS spam messages
without the user’s consent

INTERNET;
CHANGE_
COMPONENT_
ENABLED;
RECEIVE_SMS;
READ_SMS;
SEND_SMS
WRITE_SMS;
RECEIVE_SMS;
RAISED_THREAD_
PRIORITY; READ_
CONTACTS;
WRITE_EXTERNAL;
RECEIVE_BOOT_
COMPLETED; WAKE_
LOCK;

Table 2 (continue)

Android Botnets: A Serious Threat to Android Devices

47Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

2014 FrictSpy.E3 HTTP; SMS Command and Control to
execute malware activities
such as call records,
use camera for pictures
and videos, use mic for
recording voice

Incoming/Outgoing call;
Incoming/Outgoing SMS,
GPS location information,
URLs that the device user
accesses

ACCESS_NETWORK_
STATE; CALL_PHONE;
GET_TASKS;
INTERNET;
READ_PHONE_STATE;
READ_SMS;
RECEIVE_BOOT_
COMPLETED;
RECEIVE_SMS;
SEND_SMS;
SYSTEM_ALERT_
WINDOW;
WAKE_LOCK;
WRITE_SMS;

Geinimi.A HTTP ON, OFF, ADD or Set or
Rem Sender

User, Software version,
IMEI, SIM State, CPU type,
SIM country, IMSI, SIM,
SIM operator, build info,
GPS, Board, Brand

CALL_PHONE;
GET_TASKS;
INTERNET;
READ_PHONE_STATE;
READ_SMS;
RECEIVE_BOOT_
COMPLETED;
RECEIVE_SMS;
SEND_SMS;
SYSTEM_ALERT_
WINDOW;
WAKE_LOCK;
WRITE_SMS;

SpyBubb.A SMS Leak location, GPS and
maps through SMS; HTTP:
time; sms; send; delete;
smscf SMS: ServerKey
+001; +002; anything

Collect SMS, Call, Fine
location, Coarse location,
GPS, Device info like IMEI,
IMSI etc. Share phone
information to vendor site

ACCESS_NETWORK_
STATE;
ACCESS_WIFI_STATE;
READ_PHONE_STATE;
INTERNET;
WAKE_LOCK;

2015 Leech.A HTTP action.host start; action.
boot; action.shutdown;
action.install; action.
installed; action.check
live;action.download apk

Instal itself persistently,
run with full privileges,
unwanted payment through
SMS, spying activities,
dynamically load command
and control server

ACCESS_NETWORK_
STATE;
ACCESS_WIFI_STATE;
READ_PHONE_STATE;
INTERNET;
WAKE_LOCK;

Tediss SMS N/A Monitor calls, SMS and
conversation applications

CALL_PHONE;
GET_TASKS;
INTERNET;
READ_PHONE_STATE;
READ_SMS;
RECEIVE_BOOT_
COMPLETED;
RECEIVE_SMS;
SEND_SMS;
SYSTEM_ALERT_
WINDOW;
WAKE_LOCK;
WRITE_SMS;

WormHole.A HTTP and
SMS

WormHole.A
HTTP and SMS

Instal applications without
notification; Location
information; Add contact
items; Monitor list of
applications

READ_EXTERNAL_
STORAGE;
READ_PHONE_STATE;
READ_NETWORK_
STATE;
INTERNET;
READ_INTERNAL_
STORAGE;
WAKE_LOCK;
READ_COARS_
LOCATION;

Table 2 (continue)

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

48 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Table 2 (continue)

SilverPush.A HTTP and
SMS

HTTP: time; sms; send;
delete; smscf SMS:
ServerKey +001; +002;
anything; ON, OFF, ADD
or Set or Rem Sender

IMEI number; Operating
system version; Location;
Potentially the identity of the
owner; Behaviour of users
using TVs; Web browsers;
Radios

ACCESS_NETWORK_
STATE; CALL_PHONE;
GET_TASKS
INTERNET;
READ_PHONE_STATE;
READ_SMS;
RECEIVE_SMS;
SEND_SMS;
WRITE_SMS;

2016 MazarBOT.A SMS N/A Sends premium SMS,
exfiltrate sensitive
information and steal the
received SMS messages by
setting up a backdoor on
device

ACCESS_NETWORK_
STATE;
CALL_PHONE;
GET_TASKS;
INTERNET;
READ_PHONE_STATE;
READ_SMS;
RECEIVE_BOOT_
COMPLETED;
RECEIVE_SMS;
SEND_SMS;
SYSTEM_ALERT_
WINDOW;
WAKE_LOCK;
WRITE_SMS;

Morder.A HTTP and
SMS

Command and Control to
execute Malware activities
such as calls record,
use camera for pictures
and videos, use mic for
recording voice

Track location; Leak
contacts to C&C
Upload data from SD Card
to C&C; Delete or download
files in the infected device;
Leak phone call history;
Take pictures with the
camera; Record audio
and calls; Execute shell
commands

ACCESS_NETWORK_
STATE;
CALL_PHONE;
GET_TASKS;
ACCESS_FINE_
LOCATION;
ACCESS_COARS_
LOCATION;
INTERNET;
READ_PHONE_STATE;
READ_SMS;
RECEIVE_BOOT_
COMPLETED;
RECEIVE_SMS;
SEND_SMS;
SYSTEM_ALERT_
WINDOW;
WAKE_LOCK;
WRITE_SMS;

Smishing.D SMS time; sms; send; delete;
smscf SMS: ServerKey
+001; +002; anything; ON,
OFF, ADD or Set or Rem
Sender

Detect text messages;
Access fraudulent fake bank
URL; Steal user’s sensitive
credential; Password
stealing; Additional
information stealing

ACCESS_NETWORK_
STATE;
CALL_PHONE;
GET_TASKS;
INTERNET;
READ_PHONE_STATE;
READ_SMS;
RECEIVE_SMS;
SEND_SMS;
WRITE_SMS;

NA=Not Available, HTTP=Hyper-Text Transfer Protocol, SMS=Short Message Service, PUP=Potential
Unwanted Programmes, SD=Secure Digital, C&C=Command & Control Servers, IMEI=International
Mobile Equipment Identity, IMSI=International Mobile Subscriber Identity, HTTP=Hyper-Text
Transfer Protocol

Android Botnets: A Serious Threat to Android Devices

49Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Components of Android Botnet

A typical Android botnet has four elementary components as shown in Figure 2: bot, botmaster,
command and control server and communication channel.

22

Figure 2. Typical android botnet structure.

Components of Android Botnet

A typical Android botnet has four elementary components as shown in Figure 2: bot,

botmaster, command and control server and communication channel.

Bot. A bot is a malicious Android application that is installed in a susceptible host that can

perform a series of different harmful actions upon the end user at a cybercriminal’s

command. This application can be installed to the victim devices in diverse ways. The

most common ways include access to the infected websites, drive-by-downloads, spam

emails, viral mechanisms and much more (Karim et al., 2015). Once an end-user device is

infected with malicious software, it receives commands and controls from the botmaster

through the command and control server using communication channels. A bot can be a

servant and client at the same time.

Figure 2. Typical android botnet structure

Bot. A bot is a malicious Android application that is installed in a susceptible host that can
perform a series of different harmful actions upon the end user at a cybercriminal’s command.
This application can be installed to the victim devices in diverse ways. The most common ways
include access to the infected websites, drive-by-downloads, spam emails, viral mechanisms and
much more (Karim et al., 2015). Once an end-user device is infected with malicious software,
it receives commands and controls from the botmaster through the command and control server
using communication channels. A bot can be a servant and client at the same time.

Botmaster. The attacker is also known as the botmaster, who maintains and operates the
command and control of botnets from remote areas. The botmaster, also known as the bot-
herder, is responsible for a variety of malicious activities. Botmasters ensure that errors are
fixed and that the bot does not break any of the rules of the channel or server it is logged into.
Most botmasters hide their identity via proxies, the onion ring (TOR) and/or shells to disguise
their ip address from detection by investigators and law enforcement agents.

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

50 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Command control server. The term ‘command and control’ (C&C) is a military concept.
Command and Control servers allow a bot entity to take new instructions and malicious
capabilities as commanded by a remote individual (botmaster). These servers are used to control
botnets, in particular. Command and control in the botnet’s Fast-flux Domain Name System
(DNS) can be used to make track the control server difficult to do, as the server may change
from day to day. These servers may also hop from one DNS domain to another. The Domain
Generation Algorithm (DGA) is used presently to create new DNS names for controller servers.
A botnet may have different C&C server topologies like Star, Multi-Server, Hierarchical and
Random topology.

Communication channels. The botnet communication channel refers to the protocol used by
bots and the botmaster to communicate with each other. Bluetooth, Internet Relay Chat (IRC),
Hypertext Transfer Protocol (HTTP), peer-to-peer (P2P) and voice over internet protocol
(VoIP) servers are used to pass information between bots and the botmaster. The botmaster
creates IRC channels on the C&C server, after which the compromised machines will wait for
commands to perform malicious activities. An interesting feature of the IRC protocol is the
possibility of multicast communication through groups. The IRC channel has some serious
limitations like being easy to detect and interrupt. It is rarely used in corporate networks and
is usually blocked (Silva et al., 2013).

Due to these limitations of the IRC channel, the HTTP has become the most usable
mechanism for implementing command and control communication (Liu, Chen, Yan, & Zhang,
2008). The first Android botnet named SymbOS/Yxes, which appeared in 2009, (Suarez
Tangil, Tapiador, Peris-Lopez, & Ribagorda, 2014) targeted the SYMBIAN OS platform
using a rudimentary HTTP-based command and control (C&C) channel. Centralised botnets
are not more secure as discussed above, so the trend shifted to decentralised botnets. Most of
the decentralised botnets are based on a variety of P2P protocols (Jelasity & Bilicki, 2009).
Similarly, VoIP is used as the communication channel in vishing (VoIP and phishing) instead
of the more usual email technique.

Life Cycle of Android Botnet

Android botnets can come in different structures and sizes, but in general, they go through the
same steps as computer botnets (Silva et al., 2013), as shown in Figure 3. An active botnet
requires the bot device to complete its life cycle. A typical Android botnet can be developed
and maintained in five phases: initial infection, secondary injection, connection, malicious
command and control, update and maintenance. In the first phase, initial infection, the end-user
device is infected and becomes an active member of the Android botnet. The second phase,
secondary injecting, can be carried out by injecting the malicious code into the end-user devices
through Bluetooth, drive-by-download, automatic scan, NFC and Wi-Fi (Faruki et al., 2015).

After injecting the code into the victim’s device, the bot finds a way to connect to the
command and control server. This happens in the connection phase, which is the only phase
that may occur several times during the botnet’s life cycle (Liu et al., 2008). Once an infected
device connects to the Android botnet’s command and control server, the botmaster will send

Android Botnets: A Serious Threat to Android Devices

51Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

commands through the C&C server using communication channels, while the bots await
commands from the botmaster.

25

Figure 3. Android botnet life cycle.

The last phase of the Android botnet’s life cycle is updating and maintenance of the

infected devices. Maintenance is important for a botnet to keep his army of infected

devices active. The new updates are then sent to these bots many times for many reasons

that propagate the different types of criminal activity such as spamming, identity theft,

DDoS attacks and much more.

Mobile Device Infection Vectors

There are multiple infection vectors for delivering malicious content to mobile devices. In

this survey, we classify infection vectors into four categories: SMS/MMS, Bluetooth,

Internet access and file duplication with USB. Cellular services, such as short message

service (SMS) and multimedia messaging service (MMS), can be used as attack vectors for

smartphones, as shown in Figure 4. For example, SMS/MMS messages can be used to

deliver malicious content and to maintain communication with an attacker. For example,

ComWar is a worm that browses the host’s phonebook and then spreads via SMS/MMS

messages (Peng et al., 2014).

Zombi
e (1)

Zombi
e (n)

Botmaster

Botnet

Get Control, Malicious
Command and Maintenance Connection &

Update

Vulnerable Host

Ini
tial

 In
fec

tio
n

Sec
ond

ary
 In

jec
tion

Inj
ect

ing
 M

alic
iou

s
Co

des

Mobile Device Infection
Vectors

Drive-by-
DownloadBluetooth Automatic Scan Near-Field

Communication Wi-Fi

Figure 3. Android botnet life cycle

	

Mobile Device Infection
Vectors

Drive-by-
DownloadBluetooth Automatic Scan Near-Field

Communication Wi-Fi

Figure 4. Mobile device infection vectors

The last phase of the Android botnet’s life cycle is updating and maintenance of the infected
devices. Maintenance is important for a botnet to keep his army of infected devices active. The
new updates are then sent to these bots many times for many reasons that propagate the different
types of criminal activity such as spamming, identity theft, DDoS attacks and much more.

Mobile Device Infection Vectors

There are multiple infection vectors for delivering malicious content to mobile devices. In
this survey, we classify infection vectors into four categories: SMS/MMS, Bluetooth, Internet
access and file duplication with USB. Cellular services, such as short message service (SMS)
and multimedia messaging service (MMS), can be used as attack vectors for smartphones,
as shown in Figure 4. For example, SMS/MMS messages can be used to deliver malicious
content and to maintain communication with an attacker. For example, ComWar is a worm that
browses the host’s phonebook and then spreads via SMS/MMS messages (Peng et al., 2014).

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

52 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Bluetooth

Bluetooth is short-range radio communication protocol used for exchanging data over a limited
distance between Bluetooth-enabled devices. Device-to-Device (D2D) malware attacks are
performed on the bases of Bluetooth. Once the cybercriminal infects a smartphone with the bot
code, it can enable Bluetooth without the knowledge of the owner and target another Bluetooth-
enabled device in its range. If the connection is established, the infected device sends the bot
code to the targeted device using this Bluetooth vector. This limits the attack vector in some
way, such as one-to-one connection, limited distance range and others.

Drive-by-Download

To secure Android devices from botnet attacks, users should only visit reputable websites
for downloading application software and other video/audio materials. Botnet infection is
possibly acquired by visiting a malicious website. When visited by a smartphone or tablet
user, the malicious website forces the user to download the plugin software, which is in fact a
malware. If a web page causes the automatic downloading and installation of software without
the Android device user’s consent, the page is considered malicious. This mechanism, which
is also called drive-by-download, allows malware to control Android devices.

Automatic Scan

Automatic scan is performed to infect new victim’s devices by compromising and influencing
them to be a part of the botnet. In this technique, a new host inside the botnet must be recruited
to establish a new botnet through vulnerability scanning (Ianelli & Hackworth, 2005). This goal
can be achieved by infecting many hosts, which attempt to identify exploitable vulnerabilities
in other new hosts. For example, FTP services suffer buffer overflow exploitation (Lashkari,
Ghalebandi, & Moradhaseli, 2011).

Near-Field Communication

Near-Field Communication (NFC) is an advanced wireless technology that allows fast data
transfer between two close devices with an enabled NFC setting. NFC is related to mobile
payments, such that it has the personal banking information of a user. It has gained popularity
among botmasters for spreading malicious commands to compromise other devices because of
its fast data transfer capability. In addition, dependence on NFC has induced the C&C channel
of botnets to be more challenging (Stevanovic, Revsbech, Pedersen, Sharp, & Jensen, 2012).

Wi-Fi

Wi-Fi has assured compensation over other communication media applicable to Android
botnets. The use of open Wi-Fi networks for an Android botnet provides a higher level of stealth
and fewer entry barriers than other communication media. Denial of service (DoS) attacks
and distributed DoS attacks are threats that can simultaneously inflict devastation on many
users. Apart from the aforementioned-infection vectors, smartphones could be compromised

Android Botnets: A Serious Threat to Android Devices

53Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

using other methods e.g. the use of USB. If the files used to synchronise smartphones are
compromised, malware can also infect smartphones. As a result, attackers can access the host’s
classified information and instal malicious applications on the smartphone.

Android Botnet Architecture

Personal-computer-based botnet are considered the most compromised platforms for botnet
attacks compared to the recently evolved Android botnets due to some limitations, such as
limited battery power, limited processing speed, limited internet access and limited memory
storage. Android botnets have similar architecture as computer botnets, namely, centralised
architecture, decentralised architecture and hybrid architecture. Table 3 shows the advantages
and disadvantages of existing Android botnet architecture with respect to map complexity,
detection, message latency and survivability.

Table 3
Command-and-Control architecture

Architecture Centralised Decentralised Hybrid
Alias Star Peer-to-peer Random
Map Complexity Very low Medium-High Moderate
Detection Medium Low-Medium High
Message Latency Very low Moderate Moderate-High
Survivability Low-Medium Medium High

Centralised botnet architecture. In centralised botnet architecture, all the bots relate to a
central command-and-control server to establish a communication channel with central point
as illustrated in Figure 5. In centralised architecture, the botmaster controls and supervises
all bots in a botnet from a single C&C server. Botmasters are able to communicate with the
bots continuously by sending instructions to them through these central servers (Anwar et al.,
2014). As all bots receive commands and report to a C&C server, it is easy for botmasters to
manage botnets using centralised architecture. Furthermore, centralised botnet architecture uses
two types of topologies, star topology and hierarchical topology, and two types of protocols,
Internet Relay Chat (IRC) and Hypertext Transfer Protocol (HTTP) (Khattak, Ramay, Khan,
Syed, & Khayam, 2014; Li, Jiang, & Zou, 2009). The design of centralised architecture is less
complex compared to other architecture, while message latency and survivability rate are low.
This causes low reaction time, easy means of communication and direct feedback (Plohmann
et al., 2011).

It also possesses some limitations. For instance, centralised architecture has more maximum
failure chances compared with other architecture. If the C&C server fails, then all the botnets
may stop working because of the central point of control. Detection of a botmaster is easier
compared than if the decentralised and hybrid architecture were used (Bailey, Cooke, Jahanian,
Xu, & Karir, 2009; Cooke, Jahanian, & McPherson, 2005; Zang et al., 2011).

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

54 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Decentralised botnet architecture. In decentralised botnet architecture, no single responsible
entity controls different bots in a botnet. More than one C&C server communicate with
various bots as described in Figure 3. Botnets using decentralised architecture are known as
decentralised botnets. However, the term peer-to-peer botnet is also commonly used for this
type of botnet. Decentralised botnets are more difficult to detect compared with centralised
botnets. Figure 6 shows that no specific C&C server exists in decentralised architecture, and
all bots act as the C&C server and the client at the same time (Dong, Wu, He, Huang, & Wu,
2008). Decentralised architecture is based on Peer-to-Peer (P2P) protocols. Compared with
centralised architecture, the design of P2P architecture is more complex and detection of a
botnet with the same architecture is more difficult than detection of other botnets. Message
latency and survivability rate are higher than those of the centralised botnet architecture. Failure
chances are lower in decentralised architecture than in centralised architecture because if a C&C
server fails, then other C&C servers can manage and monitor the botnet (Cooke et al., 2005).

30

Figure 5. Centralised android botnet architecture.

Decentralised botnet architecture. In decentralised botnet architecture, no single

responsible entity controls different bots in a botnet. More than one C&C server

communicate with various bots as described in Figure 3. Botnets using decentralised

architecture are known as decentralised botnets. However, the term peer-to-peer botnet is

also commonly used for this type of botnet. Decentralised botnets are more difficult to

detect compared with centralised botnets. Figure 6 shows that no specific C&C server

exists in decentralised architecture, and all bots act as the C&C server and the client at the

same time (Dong, Wu, He, Huang, & Wu, 2008). Decentralised architecture is based on

Peer-to-Peer (P2P) protocols. Compared with centralised architecture, the design of P2P

architecture is more complex and detection of a botnet with the same architecture is more

difficult than detection of other botnets. Message latency and survivability rate are higher

than those of the centralised botnet architecture. Failure chances are lower in decentralised

architecture than in centralised architecture because if a C&C server fails, then other C&C

servers can manage and monitor the botnet (Cooke et al., 2005).

Botmaster

Bot

Command & Control Server

Botmaster

Bot

Bot

Bot

Bot

Bot

Bot

Bot

Bot

Bot

Figure 5. Centralised android botnet architecture

30

Figure 5. Centralised android botnet architecture.

Decentralised botnet architecture. In decentralised botnet architecture, no single

responsible entity controls different bots in a botnet. More than one C&C server

communicate with various bots as described in Figure 3. Botnets using decentralised

architecture are known as decentralised botnets. However, the term peer-to-peer botnet is

also commonly used for this type of botnet. Decentralised botnets are more difficult to

detect compared with centralised botnets. Figure 6 shows that no specific C&C server

exists in decentralised architecture, and all bots act as the C&C server and the client at the

same time (Dong, Wu, He, Huang, & Wu, 2008). Decentralised architecture is based on

Peer-to-Peer (P2P) protocols. Compared with centralised architecture, the design of P2P

architecture is more complex and detection of a botnet with the same architecture is more

difficult than detection of other botnets. Message latency and survivability rate are higher

than those of the centralised botnet architecture. Failure chances are lower in decentralised

architecture than in centralised architecture because if a C&C server fails, then other C&C

servers can manage and monitor the botnet (Cooke et al., 2005).

Botmaster

Bot

Command & Control Server

Botmaster

Bot

Bot

Bot

Bot

Bot

Bot

Bot

Bot

Bot

Figure 6. Decentralised architecture

Hybrid botnet architecture. Hybrid architecture is the combination of centralised and
decentralised architecture as shown in Figure 7. Hybrid architecture comprises two types of
bots, namely, the servant and the client. Bots are connected to the hybrid botnet as a client or
a servant. Monitoring and detection of botnets with hybrid architecture is more difficult than
detecting those with centralised and decentralised architecture. However, hybrid architecture
is less complex in design.

Android Botnets: A Serious Threat to Android Devices

55Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Mobile Botnet Detection Techniques

The challenges faced in mobile-device security are quite similar to those faced in personal-
computer security. To solve this problem, researchers have proposed and developed common
desktop security solutions for smartphones. Some of the popular security solutions are listed
below.

Kirin. Kirin security service is an OS-level protection service that provides enhanced
security mechanisms for Android smartphone applications (Enck et al., 2009). This approach
performs lightweight certification of applications to mitigate malware at installation time with
modification of the Android applications installer. Kirin has different security rules; a well-
known combination of permissions is the most important part in these rules. To define these
security rules, a detailed understanding of malware and protection techniques is required; it is
usually performed by security experts. Furthermore, it prevents access to sensitive information.
However, once information enters the application, no additional mediation occurs.

Multi-Agent system. Szymczyk (2009) proposed the Multi-Agent Bot Detection System
(MABDS) based on the hybrid approach. It is the combination of multiple agents such as
administrative agent, user agent, a central knowledge database, system analysis, honeypots,
agent collections and network analysis (Silva et al., 2013). In this technique, each agent observes
traffic using different sensors by implementing the Markov chain model to perform dynamic risk
assessment (Shameli, Cheriet, & Hamou-Lhadj, 2014). These systems in multifaceted, piercing,
real-time domains involve autonomous agents that should act as a team to compete against
malware (Castiglione, De Prisco, De Santis, Fiore, & Palmieri, 2014). The slow convergence
of new signatures with the knowledge database is the key limitation of this technique. The new
signature updates are another limitation of this system (Karim et al., 2014).

SAINT. SAINT (Ongtang, McLaughlin, Enck, & McDaniel, 2009) is a rule-based runtime
approach for Android application security that defines application protection at runtime,

31

Figure 6. Decentralised architecture.

Hybrid botnet architecture. Hybrid architecture is the combination of centralised and

decentralised architecture as shown in Figure 7. Hybrid architecture comprises two types

of bots, namely, the servant and the client. Bots are connected to the hybrid botnet as a

client or a servant. Monitoring and detection of botnets with hybrid architecture is more

difficult than detecting those with centralised and decentralised architecture. However,

hybrid architecture is less complex in design.

Botmaster

Bot

Bot

Bot

Bot

BotBot

Bot

Bot

Bot

Figure 7. Hybrid architecture.

Mobile Botnet Detection Techniques

The challenges faced in mobile-device security are quite similar to those faced in personal-

computer security. To solve this problem, researchers have proposed and developed

common desktop security solutions for smartphones. Some of the popular security

solutions are listed below.

Kirin. Kirin security service is an OS-level protection service that provides enhanced

security mechanisms for Android smartphone applications (Enck et al., 2009). This

Figure 7. Hybrid architecture

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

56 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

depending on the caller and permission constraints. It protects Android applications from
one another by their policies during the installation time and runtime interaction. In this case,
it allows an application to define which application can access its interfaces and how other
applications use those interfaces. This technique has the same limitation as Kirin security
services. To define these security rules, a detailed understanding of malware and protection
techniques is required, and security experts are required to perform the job.

AASandbox. AASandbox was the first technique to perform both static and dynamic analysis of
the Android applications and was proposed by Bläsing, Batyuk, Schmidt, Camtepe and Albayrak
(2010). The static analysis scans the Android applications for malicious patterns without
installation on the Android platform, while in the dynamic analysis, the Android application
is executed in a fully isolated platform called sandbox. It also intervenes and logs low-level
interaction with the system for further analysis during application execution. In contrast, both
the detection algorithm and sandbox algorithm are implemented in the cloud. AASandbox
uses a system called foot-printing approach for detecting suspicious Android applications. In
its early days, when AASandbox was proposed, there were no known botnet malware samples
available to evaluate this technique, although it seems to be unmaintained nowadays.

Paranoid. Considering various factors of smartphone technology including resources, storage,
processing and memory, Paranoid Android malware detection technique was proposed for the
first time in mobile technology (Portokalidis, Homburg, Anagnostakis, & Bos, 2010). Paranoid
Android is a security model implemented on remote servers (cloud server) to observe the
dynamic behaviour of Android applications and to detect zero-day attacks, system call anomaly
and antivirus file scanning. Both Crowdroid and Paranoid Android incur a 15-30% overhead
for smartphone devices. This particular technique records information that is necessary for
application execution and transmits it to a cloud server over an encrypted channel. While a
complete replica of the executing application is running parallel on the remote virtual machine,
the server can detect the potential malware using this technique. Both the application and
its replica are executing parallel to one another, which may cause a lot of space and time
complexity. It also converts energy by using ‘loose synchronisation’, which may cause loss
of battery power usage that specifically sends information when the mobile user is using the
mobile device.

Crowdroid. Crowdroid is a dynamic approach based on the behaviour of Android applications
and was proposed by Burguera, Zurutuza and Nadjm-Tehrani (2011). Crowdroid is a lightweight
application available online on Google Play Store, which can be downloaded and installed on
Android smartphone devices. It monitors and collects the API calls of apps that are running on
mobile devices and sends them to a centralised server after preprocessing. With the application
of cluster algorithms, Android applications can be evaluated with this approach. The given
approach is also able to detect self-written malware.

Android Botnets: A Serious Threat to Android Devices

57Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

DroidRanger. DroidRanger is the combination of two systems based on permissions’ behaviour,
foot-printing and heuristic-based filtering (Odili, Kahar, Anwar, & Ali, 2017). It was proposed
by Zhou, Wang, Zhou and Jiang (2012). This technique applies both the static and dynamic
approaches to detect malicious applications in existing Android markets. Permissions-based
behaviour foot-printing is used for the detection of known malware, while heuristic-based
filtering is used for unknown malware Android applications. Despite the advancements in the
detection approaches applied by DroidRanger, the system has some limitations; it requires
manual operation for analysing and collecting behaviour of Android applications (Babu Rajesh,
Reddy, Himanshu, & Patil, 2015). Manual operation takes more time than other detection
techniques (Odili & Kahar, 2015).

Bouncer. Bouncer was proposed in 2012 by Oberheide and Miller (2012). It provides static
and dynamic scanning together with Android applications that are automatically performed
on the server. Google Play Store uses this technique to scan an Android application before
hitting the application market (Penning, Hoffman, Nikolai, & Wang, 2014). Bouncer has the
potential to take newly-uploaded applications to the app market. If this application is able to
send an SMS to the malicious sites or detect other criminal activities, it classifies that Android
application as malware. If not, it classifies it as benign. However, in this advanced era, it seems
that cyber attackers have found ways to bypass detection. This technique is better for those
who download applications from Google Play Store, while those who download applications
from third-party app stores are not protected by this technique.

RobotDroid. RobotDroid is an Android malware detection technique that is based on SVM
machine learning classifier algorithm and was proposed by Zhao, Zhang, Ge and Yuan (2012).
This technique focusses on the signature of the applications. It has the ability to detect unknown
malware like Plankton, DroidDream and Gemini. This framework can be used only for these
few types of malware; this is the main limitation of this framework.

DroidScope. DroidScope designed by Yan and Yin (2012) is a fine-grained dynamic binary
instrumentation tool for Android. It rebuilds two levels of semantic information: OS and Java.
It provides an instrumentation interface that can be used to write plug-ins. It implements
API tracing, native instruction tracing, Dalvik instruction tracing and taint tracking plug-ins.
DroidScope works entirely on the emulator level and requires no changes to the Android
sources. It runs the analysis outside the smartphone software stack and can analyse kernel-
level attacks. This system has a big drawback: not able to detect real-time attacks. The second
drawback is that it does not cover the subtleties of real devices (Enck et al., 2014).

Table 4 shows the list of Android botnet detection techniques with respect to year, major
contribution and limitations.

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

58 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Table 4
List of Android Botnet detection techniques

Ref Techniques Year Architecture Key Concept Major Contribution Limitation

Enck et al., 2009 Kirin 2009 Static Based on
permissions

Used rules to
detect malware in
installation time

No access to
sensitive information
of application;
Cannot detect new
malware

Szymczy, 2009 Multi-Agent
System

2009 Hybrid Based on
permissions and
rules

Used agent for
traffic analysis

Slow interaction
with the knowledge
database

Ongtang et al., 2009 SAINT 2009 Static/
Dynamic

Based on rules Installation time
detection of
malware

No access to
sensitive information
of application;
Cannot detect new
malware

Bläsing et al., 2010 AASandbox 2010 Static/
Dynamic/
Hybrid

Base on
signatures and
behaviour of the
logs

Before instal
detection of
malware

NA

Portokalidis et al.,
2010

Paranoid
Android

2010 Dynamic/
Hybrid

Based on
behaviour

Dynamic analysis,
memory scanners,
system call
anomaly detection

Consumption of
more time, space
and power

Burguera et al.,
2011

Crowdroid 2011 Dynamic Based on
behaviour

Client APK,
behavioural
detection

More clients,
dynamic analyser

Zhou et al., 2012 DroidRanger 2012 Static/
Dynamic

Permissions-
based behaviour

Detection of known
and unknown
malware, 0-day
malware detection

Only a few of all
possible execution
paths are negotiated
within one analysis
run

Oberheide & Miller,
2012

Bouncer 2012 Static/
Dynamic

Permissions-
based

Detection of
unknown malware

Can be easily evaded
by cybercriminals

Zhao et al., 2012 Robotdroid 2012 Static Signature-based Detection of
unknown malware
such as Plankton,
DroidDream, and
Gemini

Detects only specific
malware families
such as Plankton,
DroidDream and
Gemini

Yan & Yin, 2012 DroidScope 2012 Dynamic Dynamic binary
instrumentation

Cannot detect real-
time botnet attacks

Zhou et al., 2012 DroidMOSS 2012 Dynamic Permissions-
based,

Fuzzy Hashing
Technique,

Identifies only
repackaged official
Android market
applications

Alparslan,
Karahoca, &
Karahoca, 2012

Data Mining 2012 Static Behaviour-based utilise auditing
programmes to
extract and extend
features

Cannot detect real-
time botnet attacks

Faruki, Ganmoor,
Laxmi, Gaur, &
Bharmal, 2013

AndroSimilar 2013 Static/
Dynamic

Statistical
features

Improbable
signature
generation, thwarts
obfuscation and
repackaging

Limited malware
DB, more false
positives; Cannot
detect new malware

Spreitzenbarth,
Freiling, Echtler,
Schreck, &
Hoffmann, 2013

Mobile-Sandbox 2013 Static Smali, emulator Both static and
dynamic analysis,
obfuscation
resistance, native
API call track, web
accessibility

More detection time

Android Botnets: A Serious Threat to Android Devices

59Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

DroidMoss. Zhou et al. (2012) proposed DroidMoss in 2012, using the fuzzy hashing technique
to effectively localise and detect repackaged and injected applications. This technique detects
Android applications in the existing mobile app market that are injected with malicious codes
using the repackaging technique. The main feature of the applications used in this technique
is the Dalvik opcodes. DroidMOSS calculates fuzzy hashes on each N sequential opcode,

Rastogi, Chen, &
Enck, 2013

AppsPlayground 2013 Static/
Dynamic

N/A he-based UI
interaction based
on contextual
exploration

Cannot detect real-
time botnet attacks

Reina, Fattori, &
Cavallaro, 2013

CopperDroid 2013 Dynamic Behaviour-based
approach

Automatically
performs
dynamic analysis,
reconstructs
behaviour of
Android

Identifies only
repackaged official
Android market
applications

Gascon, Yamaguchi,
Arp, & Rieck, 2013

Embedded call
graph

2013 Dynamic Function call
graphs

Obfuscation
resistance

Undecidability of
static call graph
construction; Cannot
detect new malware

Abdelrahman,
Gelenbe, Görbil, &
Oklander, 2013

NEMESYS 2013 Static Model-based
approach

Generate
background traffic
of network for
simulating smaller
set of users, learn
Random Neural
Network,

Limited to a small
number of users,
space complexity

Roshandel,
Arabshahi, &
Poovendran, 2013

LIDAR 2013 Static/
Dynamic

Behaviour-based automatically
detects, analyses,
protects, remediates

N/A

Moonsamy, Rong,
& Liu, 2014

Mini Permission
Pattern

2013 Static/
Dynamic

Based on
permission

‘Used’ permission
extraction,
informative data
from contrast
permission patterns

Careful analysis
of permissions,
no repackaging
resistance; Cannot
detect new malware

Enck et al., 2014 TaintDroid 2014 Static Behaviour-based Different APIs,
specifically SMS
APIs

It does not track
implicit control
flows due to
performance
overhead

Suarez-Tangil,
Tapiador, Pens-
Lopez, & Blasco,
2014

Dendroid
Approach

2014 Dynamic Code Chunks Unknown malware
classification,
fast and scalable,
dendograms

No obfuscation
resistance, large
feature vectors;
Cannot detect new
malware

Dhaya & Poongodi,
2014

N-gram analysis 2014 Static N-gram CVSS Produced N-grams
signatures

No obfuscation
resistance; Cannot
detect new malware

Lindorfer,
Neugschwandtner,
Weichselbaum,
Fratantonio, Van
Der Veen, &
Platzer,, 2014

Andrubis 2014 Static/
Dynamic

Based on
behaviour and
rules

Static and dynamic
analysis on both
Dalvik VM and
System Level

Dynamic analysis
consumes more
space; Cannot
be used for latest
Android applications

Andronio, Zanero,
& Maggi, 2015

Heldroid 2015 Static/
Dynamic

Behaviour-based Static and dynamic
analysis

Portability,
internationalisation
and evasion

Table 4 (continue)

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

60 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

which then applies a measure function on the two applications to realise their similarity
quantitatively. The use of DroidMOSS is limited to identifying repackaged official Android
market applications.

Data mining. The hardest part of the detection of malicious traffic is to differentiate C&C data
flow from normal data flow behaviour. To overcome this limitation, data mining techniques
are used to recognise the pattern by extracting the unexpected network patterns (Alparslan
et al., 2012). Data mining is the most used machine learning device method for classification,
prediction, regression and inference. This technique is extensively used in anomaly detection,
especially in establishing generic and heuristic methods (Odili, Kahar, & Noraziah, 2016;
Schultz, Eskin, Zadok, & Stolfo, 2001). Data mining approaches detect structures in a wide
range of data, such as byte code, and use these structures to detect upcoming malicious
occurrences in related data. Researchers such as Gu, Perdisci, Zhang and Lee (2008), Gu,
Porras, Yegneswaran, Fong and Lee (2007), Gu, Zhang and Lee (2008), Wang, Huang, Lin
and Lin (2011) and Yu, Dong, Yu, Qin, Yue and Zhao (2010) proposed BotMiner, BotHunter,
BotSniffer and behaviour-based botnet detection systems based on the data-mining approach.
This technique is very effective though it has some limitation as well. In experiments, BotMiner
and BotHunter have been able to achieve 99% success rate with 1% false alarm and 99.2%
success rate with 0.8% false alarm, respectively (Zhao et al., 2013).

AndroSimilar. AndroSimilar (Faruki et al., 2013) detects Android malware regions of
statistical similarity starting from the .dex file. This method employs the similarity digest
hashing system on byte-stream-based robust statistical malicious features. Similarly, a digest
hashing scheme uses this feature to generate a list of signatures for this app. Here, the feature
values between 100 and 990 are selected and the rest are discarded using the Bloom filter.
A set of malicious signatures are generated and thus, a database of signatures is created. For
testing a sample app, its signature is created in the same way as described above and is matched
against a signature database and is considered malware if the similarity score crosses 35%
(Sharma et al., 2016). Authors obtain an accuracy of 72.27% using a dataset of 101 malicious
applications. Androsimilar performs at file level as an alternative for codes in decompiling;
therefore, control of shared library is not protected. Also, porting the approach to constrained
memory and a strong database remains a concern.

Mobile-SandBox. Mobile-SandBox is a static and dynamic analysis system that is publicly
available. It was proposed by Spreitzenbarth, Schreck, Echtler, Arp and Hoffmann (2015).
In this technique, the comparison of applications occurs in different stages: first, it compares
the hash value with the VirustTotal database of the running application; second, it extracts
the manifest file for permissions, background services, broadcast receivers and intents. This
technique also extracts API calls from the Dalvik bytecode; thiss happen frequently in botnets.
Mobile-SandBox makes it very easy to submit applications for static and dynamic analysis
because of its user interface. A user can easily upload an application for static and dynamic
analysis to the Mobile-SandBox by using the user interface. However, in some aspects, Mobile-
SandBox seems unable to cope with the submission load.

Android Botnets: A Serious Threat to Android Devices

61Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

AppsPlayground. AppsPlayground, based on TaintDroid, is a scalable dynamic analysis system
that is used for detection of possible data leaks (Skovoroda & Gamayunov, 2015). Proposed
by Rastogi, Chen and Enck (2013), it employs a Javaapp that connects to an emulator running
a modified version of the OS and governs app behaviour exploration logic. Simply, the aim
of AppsPlayground is to improve the stimulation of apps during dynamic analysis because it
also detects dangerous API calls.

This technique also helps to create a more realistic analysis environment. It tries to drive
the app along paths that are likely to reveal interesting behaviour through targeted stimulation
of UI elements. This approach can be seen as an intelligent enhancement of the Application
Exerciser Monkey and the custom stimulation of activity screens. This technique is largely
orthogonal, as it focusses on stimulating broadcast receivers, services and common events
instead of UI elements. Its main contribution is a heuristic-based intelligent black box (Monkey
Exerciser-like) execution approach to explore the app’s GUI (Odili, Kahar, Anwar, & Azrag,
2015). This technique can be more useful if combined with the static analysis technique.

CopperDroid. CopperDroid is a dynamic detection system presented by Reina, Fattori
and Cavallaro (2013) that is built on top of the quick emulator (QEMU). To the best of our
knowledge, this is the first technique that performs system call monitors of the Android
applications out-of-the-box through virtual machine introspection (VMI) by reconstructing
Dalvik behaviour and monitoring Binder communication (Lindorfer et al., 2014). CopperDroid
carried the binder analysis to perform the reconstruction of high level Android-specific
behaviour. It is available to the public as a web application that users can use to submit samples.

Embedded call graphs. Embedded call graphs is a static approach proposed by Gascon
Yamaguchi, Arp and Reick (2013) in 2013. This technique can be used to find similarities
between samples: first,-it-extracts function call graphs and then employs explicit mapping
through kernel graphs from map call graphs to-feature-space. Sharma, Chawla and Gajrani
(2016) showed that time and space complexity are high and large, respectively. Its key concept
is functions call graphs, while obfuscation resistance is the major contribution. Embedded call
graphs specially observe assembly-level analysis and support vector-machine implementation.
The main disadvantage of this technique is that it cannot decide the static call graph construction.

NEMESYS. NEMESYS is a network model-based security solution that combines learning and
modelling for detection of anomalies and attacks in mobile network. It deals with every mobile
connection during communication between devices in a network. The motivation behind this
approach was the difference between the number of mobile users who are monitored and dealt
with in real time. Furthermore, a clear and understandable approach was needed to deal with
every unique call. The second consideration in constructing this approach was the computational
tools that were developed for anomaly detection that were based on mathematical models.
However, NEMESYS has some limitations. For instance, it is limited to a small number of
users. Also, this approach is complex and it uses a huge amount of memory.

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

62 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Layered intrusion detection and remediation. The Layered Intrusion Detection and
Remediation (LIDAR) framework focusses on automatic detection, analysis, protection and
remediation of security threats. This framework is specially designed to detect intrusion in
a multi-dimensional mode that is of network dimension, application dimension and social
dimension (Roshandel, Arabshahi, & Poovendran, 2013). This approach contains both local
and remote analyses, which causes some drawbacks. For instance, a set of local analyses is
performed in the mobile device to detect malware and intrusion, leading to the use of more
battery power in addition to time consumption and space complexity, among other issues.

TaintDroid. TaintDroid is a system-wide dynamic taint tracking and analysis system for
simultaneous tracking of multiple sources of sensitive data. This technique monitors methods,
variables, files and messages during application execution according to data flow (Suarez-Tangil
et al., 2014). TaintDroid uses tag chunks to keep track of data in order to find information
leakage at runtime. Information flow tracking needs lots of memory. None of these schemes
is energy-efficient; hence, they are not suitable for resource-constrained mobile platforms.

Dendroid approach. The dendroid approach is based on text mining and information retrieval
techniques (Suarez-Tangil et al., 2014). This technique extracts code chunks (CC) to analyse
and classify the code structures in Android malware families. The authors present a simple
way to measure the similarity between malicious applications by formulating the modelling
process. In the experiments performed, more than 33 families with 1249 malware applications
(Sharma et al., 2016) were detected. This approach also provided automatic classification of
zero-day malware samples, which is based on the applications-code structure. With respect
to time and accuracy, this technique is very fast and accurate, with high scalability. However,
this technique features vector growth and new families create issues, while the strategies of
obfuscation are not implemented.

N-gram. The N-gram [12] analysis is a probabilistic approach to detect the presence of malware.
Reverse engineering tools like DexToJar, Java Decompiler-Graphical User Interface (JD-GUI)
and ApkTool are used in this technique to convert executable to source code (high level or low-
level language), thereby creating the training dataset. After this, the source code is considered
as N-gram signatures. This N-gram model is a popular machine-learning algorithm and it is a
type of probabilistic language that predicts the next item in the sequence with given datasets of
order (N−1) as in the Markov Model. These signatures are then stored in a Comma Separated
Values (CSV) file for the reason that signatures occupy a lot of space.

After this, a Common Vulnerability Scoring System (CVSS) is used to assess the
vulnerabilities’ severity level in software applications. It is a freeware tool. By applying this
tool on the APK file under test, the description of all the vulnerabilities and solutions to mitigate
the same is appended to the CSV file. It makes intuitive use of the N-gram machine-learning
algorithm to analyse the Android apps. Limitations include the obfuscation techniques not
being implemented.

Android Botnets: A Serious Threat to Android Devices

63Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Andrubis. Andrubis is a cloud-based malware detection technique proposed by Lindorfer et
al. (2014). This technique combines both static and dynamic analyses on both Dalvik VM and
the system level. First, it performs the static analysis by extracting the information including
broadcast receivers, requested permissions, activities, services, SDK version and package name
from the application manifest and its bytecode. Andrubis uses the modified DroidBox output
to generate XML files that contain the analysed results. In the dynamic stage, it executes the
application in a complete Android environment; during the execution its action is monitored
at both the Dalvik and the system level. Other than this, Andrubis provides a web interface for
users to submit Android applications and, so far, it has collected a dataset of over one million
Android applications, 40% of which are malware. The only disadvantage of this technique is
that it cannot track native codes. API calls that frequently happen in botnet are extracted from
the Dalvik code, while the Andrubis is limited to the application’s API level 8.

HELDROID. HELDROID is a fully automated behaviour-based approach to recognise known
and unknown ransomware and scareware (Andronio et al., 2015). This approach analyses
the Android application statically and dynamically as well. By using the static taint analysis
approach, it analyses the function calls flow. Its result is more accurate when compared to
those of previous apps. Still, it has some limitations. Although they focus on the mobile case,
the results shown are far from being accurate. Ransomware is a general problem, but in this
approach, it is limited to mobile devices only. HELDROID is based on sentence structure; this
needs internationalisation.

CHALLENGES AND FUTURE DIRECTIONS

In this section, we discuss the challenges and future directions based on the findings of our
study. Research into Android botnets is still in its initial stages. Therefore, sufficient opportunity
exists for the betterment of detection and prevention of botnet attacks. The following challenges
will help the researchers, academics and industry players to enhance this field.

Hybrid Approach Towards Android Botnet Detection

There is no way to ignore the rising security threats to mobile devices at this time. Researchers
and industry players have proposed different botnet detection techniques. Practically, most of
the existing Android botnet detections are either static or dynamic, and can detect known and
unknown Android botnets. As can be seen in Table 2, few of the existing detection techniques
based on the hybrid approach have a low detection rate and maximum false-alarm rate. This
is a disturbing discovery.

Limitation of Mobile Devices

Personal computers are considered a more suitable platform for botnet attacks compared
with mobile devices. Mobile devices have certain limitations, such as limited power storage,
limited memory storage, limited Internet access and resource constraints. They attract

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

64 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

cybercriminals because of the open environment they operate in as well as their availability,
Internet connectivity and storage capacity.

Existing Android botnet detection techniques are based on the estatic and dynamic
approaches. These require heavy battery consumption, which is the most crucial challenge in
protecting mobile devices (Ali, Zain, Zolkipli, & Badshah, 2014). Furthermore, the dynamic
approach of scanning and blocking malicious codes needs a runtime environment. This is a
big issue for mobile devices due to their limited battery power.

Internet Service Providers Should Also Provide Security Measurements

One of the biggest challenges for Internet Service Providers (ISP) is to protect mobile device
users from the botnet threats as they do not use static addresses. Mobile device users are
continuously changing their location; this creates difficulties for ISPs.

Difficulties in Estimating Botnet Size

It is very difficult to estimate the botnet size. To the best of our knowledge, there is no technique
that estimates the size of compromised bots in a botnet. With rapid developments in detecting
botnet attacks in Android devices, researchers need to find a quantitative methodology to find
the number of bots in a botnet (Odili & Kahar, 2016).

CONCLUSION

Android botnets are harmful to Android devices. The popularity of mobile devices has made
it a soft target for potential attacks. This survey aimed to find the real threat behind Android
botnets. We conducted a comprehensive survey of existing Android botnets and their detection
techniques. We categorised the detection techniques according to their detection environment,
such as static, dynamic and hybrid detection techniques. Limitations in the existing Android
botnet detection techniques as well as their benefits are listed here in an organised way. To the
best of our knowledge this is the most current organised survey on Android botnets and their
detection techniques. This research will help both academics and industry players.

ACKNOWLEDGEMENT

The authors are grateful to the Faculty of Computer Systems & Software Engineering (FSKKP),
Universiti Malaysia Pahang for funding this research study under the Grant GRS140392.

REFERENCES
Abdelrahman, O. H., Gelenbe, E., Görbil, G., & Oklander, B. (2013). Mobile network anomaly detection

and mitigation: The NEMESYS approach. Information Sciences and Systems 2013 (pp. 429–438).
Switzerland: Springer.

Ali, M., Zain, J. M., Zolkipli, M. F., & Badshah, G. (2014). Mobile cloud computing & mobile battery
augmentation techniques: A survey. In Research and Development (SCOReD), 2014 IEEE Student
Conference (pp. 1-6). IEEE.

Android Botnets: A Serious Threat to Android Devices

65Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Alparslan, E., Karahoca, A., & Karahoca, D. (2012). BotNet detection: Enhancing analysis by using
data mining techniques. In A. Karahoca (Ed.), Advances in Data Mining Knowledge Discovery and
Applications. INTECH Open Access Publisher.

Alta, V. D. M., Loock, M., & Dabrowski, M. (2005). Characteristics and responsibilities involved in a
phishing attack. In Proceedings of the 4th International Symposium on Information and Communication
Technologies (pp. 249-254). Trinity College Dublin.

Andronio, N., Zanero, S., & Maggi, F. (2015). HelDroid: Dissecting and detecting mobile ransomware.
In International Workshop on Recent Advances in Intrusion Detection (pp. 382-404). Springer
International Publishing.

Anwar, S., Inayat, Z., Zolkipli, M. F., Zain, J. M., Gani, A., Anuar, N. B., . . . & Chang, V. (2017). Cross-
VM cache-based side channel attacks and proposed prevention mechanisms: A survey. Journal of
Network and Computer Applications, 93, 259–279.

Anwar, S., Mohamad Zain, J., Zolkipli, M. F., & Inayat, Z. (2014). A review paper on botnet and
botnet detection techniques in cloud computing. In ISCI 2014 – IEEE Symposium on Computers and
Informatics (pp. 28-29). IEEE.

Anwar, S., Zain, J. M., Inayat, Z., Haq, R. U., Karim, A., & Jaber, A. N. (2016, August, 11–12,). A static
approach towards mobile botnet detection. In 2016 3rd International Conference on Electronic Design
(ICED) (pp. 563-567). IEEE.

Anwar, S., Zain, J. M., Zolkipli, M. F., Inayat, Z., Jabir, A. N., & Odili, B. (2015). Response option for
attacks detected by intrusion detection system. In 4th International Conference on Software Engineering
and Computer System (pp. 195-200). IEEE.

Anwar, S., Zain, J. M., Zolkipli, M. F., Inayat, Z., Khan, S., Anthony, B., & Chang, V. (2017). From
intrusion detection to an intrusion response system: Fundamentals, requirements, and future directions.
Algorithms, 10(2), 1–23.

Babu Rajesh, V., Reddy, P., Himanshu, P., & Patil, M. U. (2015). Droidswan: Detecting malicious Android
applications based on static feature analysis. Computer Science and Information Technology (pp.
163-178). Centre for Development of Advanced Computing, India.

Bailey, M., Cooke, E., Jahanian, F., Xu, Y., & Karir, M. (2009). A survey of botnet technology and
defenses. In Conference for Homeland Security, 2009. CATCH’09. Cybersecurity Applications and
Technology (pp. 299-304). IEEE.

Bläsing, T., Batyuk, L., Schmidt, A. D., Camtepe, S. A., & Albayrak, S. (2010). An android application
sandbox system for suspicious software detection. In Malicious and Unwanted Software (MALWARE),
2010 5th International Conference (pp. 55-62). IEEE.

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011). Crowdroid: Behavior-Based malware detection
system for Android. In Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones
and Mobile Devices (pp. 15-26). ACM.

Castiglione, A., De Prisco, R., De Santis, A., Fiore, U., & Palmieri, F. (2014). A botnet-based command
and control approach relying on swarm intelligence. Journal of Network and Computer Applications,
38, 22–33.

Christian, F., & Maria, G. (2013). Kaspersky security bulletin 2013. Retrieved from http://www.securelist.
com/en/

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

66 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Cooke, E., Jahanian, F., & McPherson, D. (2005). The zombie roundup: Understanding, detecting, and
disrupting botnets. In Proceedings of the USENIX SRUTI Workshop (pp. 6-6). USENIX.

Dhaya, R., & Poongodi, M. (2014). Detecting software vulnerabilities in Android using static analysis.
Paper presented at the Advanced Communication Control and Computing Technologies (ICACCCT),
2014 International Conference (pp. 915-918). IEEE.

Dong, D., Wu, Y., He, L., Huang, G., & Wu, G. (2008). Deep analysis of intending peer-to-peer botnet.
In 2008 Seventh International Conference on Grid and Cooperative Computing (pp. 407-411). IEEE.

Doorey, A. M. (2016). Contextualizing privacy concerns within mobile engagement: a comparative
investigation of escalating risk among general, e-commerce and health-related use. (Doctoral
dissertation). The University of Texas, Austin.

Dunne, P. (2006). The art of pishing: How to attract birds by mimicking their calls. United States of
A,erica, USA: Stackpole Books.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., ... & Sheth, A. N. (2014).
TaintDroid: An information-flow tracking system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS), 32(2), 5.

Enck, W., Ongtang, M., & McDaniel, P. (2009). On lightweight mobile phone application certification.
In Proceedings of the 16th ACM Conference on Computer and Communications Security (pp. 235-
245). ACM.

Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M., & Rajarajan, M. (2015). Android
security: A survey of issues, malware penetration, and defenses. IEEE Communications Surveys and
Tutorials, 17(2), 998–1022.

Faruki, P., Ganmoor, V., Laxmi, V., Gaur, M. S., & Bharmal, A. (2013). Androsimilar: Robust statistical
feature signature for android malware detection. In Proceedings of the 6th International Conference
on Security of Information and Networks (pp. 152-159). ACM.

Fossi, M., Egan, G., Haley, K., Johnson, E., Mack, T., Adams, T., ... & McKinney, D. (2011). Symantec
internet security threat report trends for 2010. Symantec Enterprise Security, 16, 1-20.

Gascon, H., Yamaguchi, F., Arp, D., & Rieck, K. (2013). Structural detection of android malware using
embedded call graphs. In Proceedings of the 2013 ACM Workshop on Artificial Intelligence and
Security (pp. 45-54). ACM.

Gu, G., Perdisci, R., Zhang, J., & Lee, W. (2008). BotMiner: Clustering analysis of network traffic for
protocol-and structure-independent botnet detection. In USENIX Security Symposium (pp. 139-154).
USENIX.

Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., & Lee, W. (2007). BotHunter: Detecting malware
infection through IDS-driven dialog correlation. Paper presented at the USENIX Security Symposium
(Vol. 7, pp. 1-16). USENIX.

Gu, G., Zhang, J., & Lee, W. (2008). BotSniffer: Detecting botnet command and control channels in
network traffic. In NDSS (Vol. 8, pp. 1-18).

Ianelli, N., & Hackworth, A. (2005). Botnets as a vehicle for online crime. CERT Coordination Center,
1(1), 28.

Android Botnets: A Serious Threat to Android Devices

67Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Inayat, Z., Gani, A., Anuar, N. B., Anwar, S., & Khurram Khan, M. (2017). Cloud-Based intrusion
detection and response system: Open research issues, and solutions. Arabian Journal for Science
and Engineering, 7(65), 1–25.

Inayat, Z., Gani, A., Anuar, N. B., Khan, M. K., & Anwar, S. (2016). Intrusion response systems:
Foundations, design, and challenges. Journal of Network and Computer Applications, 62, 53–74.

Jelasity, M., & Bilicki, V. (2009). Towards automated detection of peer-to-peer botnets: On the limits of
local approaches. In 2nd USENIX Conference on Large-scale Exploits and Emergent Threats (LEET) .

Karim, A., Bin Salleh, R., Shiraz, M., Shah, S. A. A., Awan, I., & Anuar, N. B. (2014). Botnet detection
techniques: Review, future trends, and issues. Journal of Zhejiang University-Science C-Computers
and Electronics, 15(11), 943–983. doi:DOI 10.1631/jzus.C1300242

Karim, A., Shah, S. A. A., Salleh, R. B., Arif, M., Md Noor, R., & Shamshirband, S. (2015). Mobile
botnet attacks – An emerging threat: Classification, review and open issues. KSII Transactions on
Internet and Information Systems, 9(4), 1471–1492. doi:10.3837/tiis.2015.04.012

Khattak, S., Ramay, N., Khan, K., Syed, A., & Khayam, S. (2014). A taxonomy of botnet behavior,
detection, and defense. IEEE Communications Surveys and Tutorials, 16(2), 898–924.

LAB, K. (2015). Kaspersky security bulletin 2015. Retrieved February, 2016, from www.kaspersky.com

Lashkari, A. H., Ghalebandi, S. G., & Moradhaseli, M. R. (2011). A wide survey on botnet. Digital
information and communication technology and its applications (pp. 445–454): Berlin, Heidelberg:
Springer.

Li, C., Jiang, W., & Zou, X. (2009). Botnet: Survey and case study. In Innovative Computing, Information
and Control (ICICIC), 2009 Fourth International Conference (pp. 1184-1187). IEEE.

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der Veen, V., & Platzer,
C. (2014). Andrubis-1,000,000 apps later: A view on current android malware behaviors. In 2014
Third International Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS) (pp. 3-17). IEEE.

Liu, L., Chen, S., Yan, G., & Zhang, Z. (2008). Bottracer: Execution-based bot-like malware detection.
In T. C. Wu, C. L. Lei, V. Rijmen & D. T. Lee (Eds.), Information Security (pp. 97–113). Germany:
Springer.

LulzSec. (2011). Distributed denial of service attack (DDoS) definition. Retrieved from http://www.
incapsula.com/

Milletary, J., & Center, C. C. (2005). Technical trends in phishing attacks. Retrieved December, 1(2007),
3-3.

Mirkovic, J., & Reiher, P. (2004). A taxonomy of DDoS attack and DDoS defense mechanisms. ACM
SIGCOMM Computer Communication Review, 34(2), 39–53.

Moonsamy, V., Rong, J., & Liu, S. (2014). Mining permission patterns for contrasting clean and malicious
android applications. Future Generation Computer Systems, 36, 122–132.

Naraine, R. (2012, February 27). Android drive-by download attack via phishing sms: ZDNet. Zero Day.
Retrieved from http://www.zdnet.com/article/android-drive-by-download-attack-via-phishing-sms/

Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. (2016). Evaluation of machine learning classifiers
for mobile malware detection. Soft Computing, 20(1), 343–357.

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

68 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Naser, A., Zolkipli, M. F., Majid, M., & Anwar, S. (2014). Trusting cloud computing for personal files.
In Information and Communication Technology Convergence (ICTC), 2014 International Conference
(pp. 488-489). IEEE.

Oberheide, J., & Miller, C. (2012). Dissecting the android bouncer (pp. 1-62). SummerCon2012, New
York.

Odili, J. B., Kahar, M. N. M., Anwar, S., & Ali, M. (2017). Tutorials on African buffalo optimization
for solving the travelling salesman problem. International Journal of Software Engineering and
Computer Systems, 3(3), 120–128.

Odili, J. B., & Kahar, M. N. M. (2015). African buffalo optimization (ABO): A new meta-heuristic
algorithm. Journal of Advanced and Applied Sciences, 3(3), 101–106.

Odili, J. B., & Kahar, M. N. M. (2016). Solving the traveling salesman’s problem using the African
buffalo optimization. Computational Intelligence and Neuroscience, 2016(2916), 1–12.

Odili, J. B., Kahar, M. N. M., & Anwar, S. (2015). African buffalo optimization: A swarm-intelligence
technique. Procedia Computer Science, 76, 443–448.

Odili, J. B., Kahar, M. N. M., & Noraziah, A.. (2016). Convergence analysis of the African buffalo
optimization algorithm. International Journal of Simulations: Systems, Science and Technology,
17(44), 44.41–44.46.

Odili, J. B., Kahar, M. N. M., Anwar, S., & Azrag, M. A. K. (2015). A comparative study of African buffalo
optimization and randomized insertion algorithm for asymmetric travelling salesman’s problem. In
Software Engineering and Computer Systems (ICSECS), 2015 4th International Conference (pp. 90-
95). IEEE.

Ongtang, M., McLaughlin, S., Enck, W., & McDaniel, P. (2009). Semantically rich application-centric
security in Android. Security and Communication Networks, 5(6), 658-673.

Peng, S., Yu, S., & Yang, A. (2014). Smartphone malware and its propagation modeling: A survey. IEEE
Communications Surveys and Tutorials, 16(2), 925–941.

Penning, N., Hoffman, M., Nikolai, J., & Wang, Y. (2014). Mobile malware security challeges and cloud-
based detection. In Collaboration Technologies and Systems (CTS), 2014 International Conference
(pp. 181-188). IEEE.

Plohmann, D., Gerhards-Padilla, E., & Leder, F. (2011). Botnets: Detection, measurement, disinfection
and defence. European Network and Information Security Agency (ENISA), 1(1), 1-153.

Portokalidis, G., Homburg, P., Anagnostakis, K., & Bos, H. (2010). Paranoid Android: Versatile protection
for smartphones. In Proceedings of the 26th Annual Computer Security Applications Conference (pp.
347-356). ACM.

Preda, M. D., Christodorescu, M., Jha, S., & Debray, S. (2008). A semantics-based approach to malware
detection. ACM Transactions on Programming Languages and Systems (TOPLAS), 30(5), 25.

Rastogi, V., Chen, Y., & Enck, W. (2013). AppsPlayground: Automatic security analysis of smartphone
applications. In Proceedings of the Third ACM Conference on Data and Application Security and
Privacy (pp. 209-220). ACM.

Reina, A., Fattori, A., & Cavallaro, L. (2013). A system call-centric analysis and stimulation technique
to automatically reconstruct android malware behaviors. EuroSec.

Android Botnets: A Serious Threat to Android Devices

69Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Roshandel, R., Arabshahi, P., & Poovendran, R. (2013). LIDAR: A layered intrusion detection and
remediationframework for smartphones. In Proceedings of the 4th international ACM Sigsoft
symposium on Architecting Critical Systems (pp. 27-32). ACM.

Rubin, A. (2008). Google bets on Android future. Retrieved from http://news.bbc.co.uk/2/hi/
technology/7266201.stm

Sauter, D. (2013). Rapid android development: Build rich, sensor-based applications with processing.
Raleigh, NC: Pragmatic Bookshelf.

Schultz, M. G., Eskin, E., Zadok, E., & Stolfo, S. J. (2001). Data mining methods for detection of new
malicious executables. In Security and Privacy, 2001 Symposium, S and P 2001. IEEE Symposium
(pp. 38-49). IEEE.

Sears, N. (2007). Android. Retrieved from http://www.openhandsetalliance.com/index.html

Shameli, S. A., Cheriet, M., & Hamou-Lhadj, A. (2014). Taxonomy of intrusion risk assessment and
response system. Computers and Security, 45, 1–16. doi:10.1016/j.cose.2014.04.009

Sharma, M., Chawla, M., & Gajrani, J. (2016). A survey of Android malware detection strategy and
techniques. In Proceedings of International Conference on ICT for Sustainable Development (pp.
39-51). Springer Singapore.

Sheta, M. A., Zaki, M., El Salam, K. A., & Hadad, E. (2015). Design and implementation of anti spyware
system using design patterns. International Journal of Computer Applications, 123(2), 9-13.

Silva, R. M., Pinto, R. C., & Salles, R. M. (2013). Botnets: A survey. Computer Networks, 57(2), 378–403.

Skovoroda, A., & Gamayunov, D. (2015). Review of the mobile malware detection approaches. In
Parallel, Distributed and Network-Based Processing (PDP) Conference, 2015 23rd Euromicro
International Conference (pp. 600-603). IEEE.

Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., & Hoffmann, J. (2013). Mobile-sandbox: Having
a deeper look into android applications. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing (pp. 1808-1815). ACM.

Spreitzenbarth, M., Schreck, T., Echtler, F., Arp, D., & Hoffmann, J. (2015). Mobile-Sandbox: combining
static and dynamic analysis with machine-learning techniques. International Journal of Information
Security, 14(2), 141–153.

Stevanovic, M., Revsbech, K., Pedersen, J. M., Sharp, R., & Jensen, C. D. (2012). A collaborative
approach to botnet protection. In CD-ARES (pp. 624-638).

Suarez-Tangil, G., Tapiador, J. E., Pens-Lopez, P., & Blasco, J. (2014). DENDROID: A text mining
approach to analyzing and classifying code structures in Android malware families. Expert Systems
with Applications, 41(4), 1104–1117. doi:10.1016/j.eswa.2013.07.106

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Ribagorda, A. (2014). Evolution, detection and
analysis of malware for smart devices. Communications Surveys and Tutorials, IEEE, 16(2), 961–987.

Szymczyk, M. (2009). Detecting botnets in computer networks using multi-agent technology. In
Dependability of Computer Systems, 2009. DepCos-RELCOMEX’09 Fourth International Conference
(pp. 192-201). IEEE.

Shahid Anwar, Mohamad Fadli Zolkipli, Zakira Inayat, Julius Odili, Mushtaq Ali and Jasni Mohamad Zain

70 Pertanika J. Sci. & Technol. 26 (1): 37 - 70 (2018)

Teufl, P., Ferk, M., Fitzek, A., Hein, D., Kraxberger, S., & Orthacker, C. (2013). Malware detection by
applying knowledge discovery processes to application metadata on the Android market (Google
Play). Security and Communication Networks, 9(5), 389-419.

Thompson, B., Morris-King, J., & Cam, H. (2016, November). Controlling risk of data exfiltration
in cyber networks due to stealthy propagating malware. In Military Communications Conference,
MILCOM 2016-2016 IEEE (pp. 479-484). IEEE.

Wang, K., Huang, C. Y., Lin, S. J., & Lin, Y. D. (2011). A fuzzy pattern-based filtering algorithm for
botnet detection. Computer Networks, 55(15), 3275–3286. doi:10.1016/j.comnet.2011.05.026

Yan, L. K., & Yin, H. (2012). Droidscope: Seamlessly reconstructing the OS and Dalvik semantic views
for dynamic Android malware analysis. In 21st USENIX Security Symposium (USENIX Security 12)
(pp. 569-584). USENIX.

Yu, X., Dong, X., Yu, G., Qin, Y., Yue, D., & Zhao, Y. (2010). Online botnet detection based on incremental
discrete Fourier transform. Journal of Networks, 5(5), 568–576.

Zang, X., Tangpong, A., Kesidis, G., & Miller, D. J. (2011). Botnet detection through fine flow
classification. Unpublished, Report No. CSE11-001.

Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., & Garant, D. (2013). Botnet detection
based on traffic behavior analysis and flow intervals. Computers and Security, 39, 2–16. doi:10.1016/j.
cose.2013.04.007

Zhao, M., Zhang, T., Ge, F., & Yuan, Z. (2012). RobotDroid: A lightweight malware detection framework
on smartphones. Journal of Networks, 7(4), 715–722.

Zhou, Y., Wang, Z., Zhou, W., & Jiang, X. (2012). Hey, you, get off of my market: Detecting malicious
apps in official and alternative Android markets. In NDSS (Vol. 25, No. 4, pp. 50-52).

