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ABSTRACT

This paper introduces new forms of bivariate generalized Poisson (BGP) and bivariate negative binomial 
(BNB) regression models which can be fitted to bivariate and correlated count data with covariates. The BGP 
and BNB regression models can be fitted to bivariate count data with positive, zero or negative correlations. 
Applications of new BGP and BNB regression models are illustrated on Australian health survey data.
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INTRODUCTION 

Poisson regression is used for modelling count data with covariates. One of the issues with 
count data is over dispersed. Also, negative binomial (NB) regression can be used to manage 
over dispersion whilst generalized Poisson (GP) regression may be fitted for under dispersed or 
over dispersed count data. GP is achieved by the limiting form of a generalized NB distribution 
(Consul & Jain, 1973). Focusing on previous studies, different forms of GP regressions have 
been offered for various parameterization of GP regression (Consul & Famoye, 1992; Wang 
& Famoye, 1997; Famoye, Wulu & Singh, 2004; Zamani & Ismail, 2012; Karimi, Faroughi 
& Rahim, 2015; Zamani, Faroughi & Ismail, 2015). 

When we have bivariate count data, there are some forms of bivariate models which can 
be fitted to bivariate Poisson (BP) (Campbell, 1934). Kocherlakota and Kocherlakota (1992) 
using trivariate reduction method. Bivariate generalized Poisson (BGP) distribution which 
follows the trivariate reduction method was obtained in Famoye and Consul (1995). 

BP distribution which applies for different levels of correct as presented by Lakshminarayana 
Lakshminarayana, Pandit & Rao (1999)  where  distance is obtained from the product of two 

Poisson marginals with a multiplicative factor 
parameter. This study was continued by 
Famoye (2010a) presented BGP distribution, 
Famoye (2010b) who introduced BNB 
regression, and Famoye (2012) who defined 
BGP regression. 
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MATERIALS AND METHODS

The result of the joint p.m.f. of BP distribution is flexible structure which obtained from the 
product of two Poisson marginals with a multiplicative factor parameter (Lakshminarayana 
et al., 1999) 
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where 1 1( )g y  and 2 2( )g y  are bounded functions in 1y  and 2y . To confide non-negativity in 
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Suppose 1iY  and 2iY  ( 1, 2,... )i n=  are count response variables. Following (1)-(2), the 
joint p.m.f. of BP regression model is 
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where 11d e−= −  and α  is the correlation parameter. The covariates can be included 
using log links, , where itx  are vectors of explanatory variables and  are 
vectors of regression parameters. The marginal means and variances are ( ) ( )it it itE Y Var Y µ= = ,  

1, 2t = , and the covariance is 1 2( )2
1 2 1 2( , ) .i id

i i i iCov Y Y d e µ µαµ µ − +=  When α is zero, it means random 
variables 1iY  and 2iY  are not dependent, which they are distributed as a marginal Poisson 
regression model. If 0α > , there are positive and if 0α < , there are  negative correlations.

The p.m.f. of GP distribution (Consul & Famoye, 1992) is
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Where 0θ > , and v  called dispersion parameter with 4max( 1, ) 1vθ− − < < . The mean 
is  1( ) (1 )E Y vµ θ −= = −  and variance is 3( ) (1 )Var Y vθ −= − . The model changes to Poisson 
when 0v = , and manages under-dispersion or over-dispersion when 0v <  or 0v > . The p.g.f. 
of GP distribution is ( 1)( ) ( )Y t

Y u E U eθϕ −= =  where ( 1)v tt ue −=  , and the m.g.f. is

( 1)( ) ( )
tuY e

YM u E e eθ −= =        (5)

In (5), ( 1)tt v e ue e − += . If we put 1u = −  in (5), we gain

( 1)( )Y sE e eθ− −=                                 (6)

where ln ( 1) 1 0s v s− − + = . By differentiating m.g.f. in (5) with respect to u  and putting 
1u = − , we obtain
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where ln ( 1) 1 0s v s− − + = . GP-1 models gained when (1 )i ivθ µ= −  in  (4) generate
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By using the same method which offered by Lakshminarayana et al. (1999) for obtaining 
BP distribution, the joint p.m.f. of BGP regression will be equalled
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where ln ( 1) 1 0,   1, 2t t ts v s t− − + = = . When, random variables 1Y  and 2Y  are independent, 
each is distributed as a marginal GP  regression. When 0α >  and 0α < , we have positive and 
negative correlations respectively. BGP regression reduces to BP regression when 1 2 0v v= = ,  
and handles under- and over dispersion when 0tv <  and 0tv > , 1, 2t = , respectively.

This article introduces a BGP regression which is based on GP-1 regression exist in (Zamani 
& Ismail, 2012; Zamani, Faroughi & Ismail, 2016). GP-1 regression is produced by putting 
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The joint p.m.f. of BGP regression is
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. When 0α = , random variables 1Y  and 2Y  are independent, 

each is distributed as a marginal GP-1 regression. When 0α >  and 0α < , we have positive 

correlation and negative correlation. BGP-1 regression decline to BP regression when 1 2 0a a= = ,  

and manages under dispersion and over dispersion when 0ta <  and 0ta > , 1,2t = ,  

respectively.

The p.m.f. of  NB regression is
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where 1
iv a− =  is the dispersion parameter. The mean and variance of NB regression are 

( )i iE Y µ=  and 1( ) (1 ) (1 )i i i i i iV Y v aµ µ µ µ−= + = + 1( ) (1 ) (1 )i i i i i iV Y v aµ µ µ µ−= + = + . NB regression in (11) is also referred as NB-2 
regression. NB-2 regression reduces to Poisson regression in the limit as 0a → , and display 
over dispersion when 0a > . 

If we replace 1
i iv a µ−=  in p.m.f. (4), NB-1 regression is obtained. The p.m.f. is (Cameron 

& Trivedi, 2013; Greene, 2008)
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where a  is the dispersion parameter. The mean and variance of NB-1 regression are ( )i iE Y µ=  
and ( ) (1 )i iV Y aµ= + .

By use the same method offered by Lakshminarayana et al. (1999), BNB regression model 
can be derived from NB-1 marginals and a mulitiplicative variable parameter. The p.m.f. of 
BNB regression model is

1

1 2

1 12

1 2 1 21 1 1
1

( ) 1P( , ) 1 ( )( )
! ( ) 1 1

it itt

t t i i

t t t

y a

it it y y
i i

t i it

y a a
y y e c e c

y a a a

µ
µ

α
µ

−
− −

− −
− − −

=

   Γ +
 = + − −        Γ + +   

∏    

  
(13)

where   
1

1(1 ) / (1 ) itta

it it itc e
µ

θ θ
−

− = − −  , 11/ ( 1),  
tit aθ −= + a  is the dispersion parameter and α  

is a multiplicative factor (or correlation) parameter.
From p.m.f. (13), 1iY  and 2iY  are independent if 0α = . When 0α < , the correlation  

between the response variables is negative and when 0α > , the correlation between 1iY  and 
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2iY  is positive. If 0a → , BNB regression reduces to BP regression in the limit and if 0a > ,  
the variance exceeds the mean and BNB regression allows over dispersion. The correlation 
between 1iY  and 2iY  can be defined, and it is equal to
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A two-sided likelihood ratio test (LRT) can be performed to test the dispersion (over- or 
under dispersion) in BP against BGP alternatives where the hypothesis is 0 1 2: 0H a a= = . 
The LRT is 1 02(ln ln )T L L= − , where 1ln L  and 0ln L  are the models’ log likelihood under 
their respective hypothesis. Since BP model is nested within BGP model, the statistic is 
asymptotically distributed as a chi-square with two degrees of freedom.

Likelihood ratio test can be performed to test over dispersion in BP regression against 
BNB regression. where 0L  and 1L  are the likelihood functions when 0H  and 1H  are true 
respectively. Since BNB regressions reduce to BP regression in the limit when 0a → , the null 
hypothesis is 0 1 2: 0H a a= = . The LRT statistic is approximately distributed as a probability 
of 0.25 at point zero, a 0.5 of chi-square with one degree of freedom and a 0.25 of chi-square 
with two degrees of freedom (Famoye, 2010a).

Akaike Information Criteria (AIC) is defined as 2dim( ) 2 ln( )AIC Lθ= − , where dim( )θ  
is the number of parameters and ln( )L  is the log likelihood of the estimated model. The model 
with the smallest AIC is the best model.

FINDINGS AND DISCUSSION

The health survey Australian data (Cameron, Trivedi, Milne & Piggott, 1988) is used for fitting 
different types of distributions such as BP, BGP as well as BNB regression models. Cameron and 
Johansson (1997) applied These data for fitting some univariate models, bivariate generalized 
negative binomial (BGNB) regression model was defined by Gurmu and Elder (2000). Famoye 
(2012) defined BGP-2 regression model. The health survey data includes 5190 single-person 
households for 1977–1978 Australian Health Survey. 

In this article, we focus on two possibly dependent and negatively correlated response 
variables called 1Y , the total number of prescribed medications consumed in two days ago  
(PRESCRIBED), and 2Y  is the number of non-prescribed medications used in the same 
period  (NON-PRESCRIBED). The mean for prescribed medications is 0.863 and standard 
deviation for prescribed medications is 1.415, the mean for non-prescribed medications is 
0.356 and standard deviation for non-prescribed medications is 0.712 and the correlation 
between response variables is -0.043. The negative correlation illustrates possible negative 
dependency between the two variables. Cameron & Trivedi (2013) founded more information 
on the explanatory variables.

Table 1 shows the estimates and standard errors for BP, BGP, BNB regression models 
which are fitted jointly to both data. 

The LRT for testing BP against BGP regressions is 381.46 and the LRT for testing BP 
against BNB regressions is 379.74, which is show over dispersion in data sets. 
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The estimates of correlation parameter for all models are negative. The negative estimates 
of correlation parameter indicating negative dependence between the two response variables. 

The t-ratio for correlation parameter under BP model is 6.66, the t-ratio for correlation 
parameter under BGP model is 6.94 as well the correlation parameter under BNB model is 
6.94 indicating that the two response variables are significantly dependent. Hence, the response 
variables are better to be fitted under BGP and BNB regression. Based on the AIC the best 
model is BGP, although the difference between AIC for BGP and BNB is small. BGP and BNB 
are more suitable than BP.

Table 1
BP, BGP and BNB regression models

Parameter              BP                                        BGP           BNB
est. s.e. est. s.e. est. s.e.

PRESCRIBED
Intercept -2.70 0.13 -2.66 0.15 -2.66 0.15
Sex 0.48 0.04 0.55 0.04 0.55 0.04
Age 2.41 0.62 2.33 0.71 2.27 0.71
Agesq -0.64 0.64 -0.65 0.74 -0.56 0.74
Income 0.00 0.06 -0.01 0.06 0.00 0.06
Levyplus 0.29 0.05 0.27 0.06 0.27 0.06
Freepoor -0.05 0.12 -0.09 0.14 -0.09 0.14
Freerepa 0.30 0.06 0.28 0.07 0.27 0.07
Illness 0.20 0.01 0.20 0.01 0.20 0.01
Actdays 0.03 0.01 0.03 0.01 0.03 0.00
Hscore 0.02 0.01 0.02 0.01 0.02 0.01
Chcond1 0.77 0.05 0.76 0.05 0.75 0.05
Chcond2 1.01 0.05 1.00 0.06 0.99 0.06
NOPRESCRIBED
Intercept -2.03 0.17 -1.95 0.19 -2.02 0.19
Sex 0.27 0.05 0.26 0.06 0.27 0.06
Age 2.86 0.95 2.83 1.05 3.08 1.05
Agesq -3.90 1.07 -3.89 1.19 -4.19 1.19
Income 0.17 0.08 0.11 0.09 0.13 0.09
Levyplus -0.03 0.06 -0.05 0.06 -0.03 0.06
Freepoor 0.00 0.12 -0.08 0.14 -0.04 0.14
Freerepa -0.29 0.09 -0.29 0.10 -0.26 0.10
Illness 0.20 0.02 0.20 0.02 0.20 0.02
Actdays 0.01 0.01 -0.00 0.01 -0.00 0.01
Hscore 0.03 0.01 0.03 0.01 0.03 0.01
Chcond1 0.15 0.06 0.14 0.06 0.13 0.06
Chcond2 0.02 0.08 0.03 0.09 0.03 0.09

1a , dispersion - - 0.18 0.02 0.39 0.04

2a , dispersion - - 0.14 0.02 0.29 0.03

α , correlation -0.89 0.13 -0.91 0.13 -0.91 0.13
Log likelihood                                                -9522.59 -9331.86 -9332.744
AIC                                                                   19099.18 18721.72 18723.49
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CONCLUSIONS 

This article has introduced new types of BGP and BNB regression models.  Because new form 
of BGP and BNB regression models have transformative mean and variance relationship, 
therefore could be fitted to bivariate count data with different levels of correlations, and admit 
over dispersion of the response variables.

New forms of BGP and BNB regression models were fitted to the Australian health survey 
and shown to have a negative correlation. The best model is BGP regression model based on 
AIC, for BNB and BP regression models. The estimates of correlation parameter for all models 
are significantly negative.
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