
Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680 © 2016 Universiti Putra Malaysia Press.

INTRODUCTION

Nowadays, sorting is in big demand. There
are many sorting algorithms available to
arrange data (Ye et al., 2014). In computer
science, sorting network algorithms also exist
to arrange data over the network. In sorting
networks, comparators (Amin et al., 2013) are

Modified Levels of Parallel Odd-Even Transposition Sorting
Network (OETSN) with GPU Computing using CUDA

Neetu Faujdar* and SP Ghrera
Jaypee University of Information Technology Waknaghat, P.O. Waknaghat, The Kandaghat, Distt. Solan,
India

ABSTRACT

Sorting huge data requires an enormous amount of time. The time needed for this task can be minimised
using parallel processing devices like GPU. The odd-even transposition sorting network algorithm is
based on the idea that each level uses an equal number of comparators to arrange data. The existing
parallel OETSN algorithm compares the elements in each phase for any type of test case. If the elements
are not in the increasing order, then they are swapped. In this way, the algorithm takes the same time
for sorting and for unique test cases. In this paper, we propose an algorithm that is the modified version
of the existing OETSN algorithm. Our approach reduces the number of levels in the OETSN based on
the nature of the data. Time complexity is also reduced from O(n) to O(1) for sorted and zero test cases.
The proposed algorithm is tested for six types of test case, which are uniform, Gaussian, zero, bucket,
staggered and sorted. The comparison with existing techniques is also presented in this paper. After
evaluation, the proposed modified version of OETSN is found to be more efficient in two types of test
case i.e. sorted and zero test cases. GPU computing using CUDA hardware is used to test the algorithms.
The speedup achieved by the parallel OETSN algorithm over sequential OETSN is also computed. The
proposed approach achieves an improvement in execution time that is 981661.6 times faster in the sorted
test case and 904620.7 times faster in the zero test case using 2500000 elements and 1024 threads in
comparison to the existing parallel OETSN.

Keywords: Sorting, GPU computing, CUDA, comparators, OETSN

Article history:
Received: 8 September 2015
Accepted: 17 February 2016

E-mail addresses:
neetu.faujdar@mail.juit.ac.in, neetu.faujdar@gmail.com
(Neetu Faujdar),
sp.ghrera@juit.ac.in, spghrera@rediffmail.com (SP Ghrera)
*Corresponding Author

Neetu Faujdar and SP Ghrera

332 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

used to compare and exchange data. Compare-exchange operation is used in sorting networks
(Martinet et al., 1989). There are two types of comparators: 1) Increasing (low to high) and
2) Decreasing (high to low) comparator. These comparators (Amin et al., 2013) are shown in
Figure 1.

Figure 1. (a) Increasing comparator (b) Decreasing comparator.

The odd-even transposition sorting network (OETSN) (Perrie et al., 1999; Behzad et al.,
2010) algorithm is designed for network models. The comparators are used to rearrange the
numbers in network models. In the odd-even transposition sorting network, an increasing
comparator is used to compare and exchange data. The OETSN algorithm performs n/2
iteration. Each iteration has two phases: 1) Odd-even exchange and 2) Even-odd exchange.
The concept of OETSN is explained with the help of an example shown in Figure 2 (Ushijima
& Fugiwara, 2005).

Figure 2. Example of OETS network.

The OETSN algorithm operates alternatively for odd and even phases. In the odd phase,
the odd position number of items is compared with the adjacent element. Similarly in the even
phase, the even position number of items is compared with the adjacent element. If the items
are not in increasing order, swapping is performed as shown in Figure 2. After ‘n’ phases of
odd-even exchange, the sequence is sorted. Each phase of the algorithm, either odd or even,

Odd-Even Transposition Sorting Network (OETSN)

333Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

requires O(n) comparisons. There are a total of ‘n’ phases; thus, the sequential complexity
of OETSN is O(n2). In this paper, we parallelised the OETSN algorithm using CUDA with
C language. We tested the OETSN using a benchmark of sorting. We used the following
distributions for benchmark to compare the performance of the OETSN algorithm. We tested
the OETSN algorithm in six types of test case, which are uniform, sorted, zero, bucket,
Gaussian and staggered. The parallel time complexity of OETSN is O(n). In this work, we
introduced a modified parallel odd-even transposition sorting algorithm, which is more efficient
in comparison to parallel OETSN on the zero and sorted test cases.

The literature review on GPU is presented in Section 2. The problem statement is given in
Section 3. A review of the literature on parallel OETSN is provided in Section 4. The proposed
algorithm is described in Section 5. The benchmark of sorting is described in Section 6. Section
7 describes the hardware configuration. Experimental evaluation of parallel OETSN and
modified parallel OETSN are given in Sections 8 and 9. In Section 10, we make our conclusions
and suggest future work in this area.

RELATED WORK

Sorting is a common problem in computer science. A huge number of algorithms have been
suggested to find an efficient solution to solve the problem. In this work, we focused on GPU
technology using the CUDA paradigm. In this section, we briefly review the related work by
other researchers on GPU sorting algorithms using CUDA.

A version of the parallel odd-even sorting algorithm implemented using CUDA was
presented by Ajdari et al. in 2015. The design of parallel radix sort and merge sort using CUDA
was given by Nadathur et al. (2009). They achieved higher performance in their experiments.

Shifu et al. (2009) proposed a sorting algorithm that is a combination of the bucket sort and
internal bitonic sort types. This algorithm achieved acceleration of many times over the STL
Quicksort implementation. They also showed that their implementation had higher performance
than the GPU quick and GPU radix sort.

Daniel and Philippas in (Daniel et al., 2009) proposed a parallel Quicksort algorithm
designed to take advantage of the high bandwidth of GPUs by minimising the amount of
bookkeeping and inter-thread synchronisation needed. They showed that their GPU-Quicksort
implementation performed better than the fastest known sorting implementations for GPU,
such as radix and bitonic sort.

Performance Evaluation of Merge and QuickSort using GPU Computing
with CUDA was presented by Neetu et al. (2015). In this paper the authors achieved better
experimental results using GPU technology.

Greb et al. presented parallel sorting based on stream processing architecture. The proposed
sorting was based on adaptive bitonic sorting. The input of ‘n’ requires ‘p’ stream processor
to sort. The optimal time complexity of the proposed approach achieved O(nlogn)/p). The
proposed approach was more competitive than sequential sorting from the theoretical as well
as a practical perspective viewpoint. The proposed algorithm was faster than sequential sorting
as well as previous non-optimal sorting approaches on the GPU. The proposed algorithm was
specially designed for practicability on modern GPU, so the name GPU-ABiSort was used
for it (Grab et al., 2006).

Neetu Faujdar and SP Ghrera

334 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Peters et al. presented Batcher’s bitonic sorting network using CUDA hardware with GPUs.
The arbitrary numbers were taken as input and assigned compare-exchange operation to threads
using the adapted bitonic sort. The proposed algorithm greatly increased the performance of
implementation (Peters et al., 2010). Jan et al. presented the analysis of three widely used
parallel-sorting algorithms. The algorithms were odd-even sort, rank sort and bitonic sort.
The comparative analysis was performed in terms of sorting rate, sorting time and speedup
on CPU and different GPU architecture. The author also implemented the parallel algorithm:
min-max butterfly network. The min-max butterfly network sorting was used to find minimum
and maximum numbers in huge data sets. The purpose of all algorithm implementation was
used to exploit the data parallelism model in order to achieve high performance on available
GPU using the OpenCL specification. The results showed minimum speedup 19x of bitonic
sort against the odd-even sort. The implementation results of the full-butterfly network were
relatively better than the three sorting techniques: bitonic, odd-even and rank sort. The author
achieved the high speedup of NVIDIA quadro 6000 GPU for min-max butterfly network,
reaching much lower sorting for high data (Jan et al., 2012).

Ajdari et al. described the modification of the odd-even sort. The modification of the
algorithm consisted of the ability to work with the blocks of elements instead of working with
individual elements. The modification was done using CUDA technology. The experimental
analysis of odd-even sort was done in both theoretical and experimental with its parallel
implementation. The results showed that sorting of integers in a CUDA environment was
much faster (Ajdari et al., 2015).

PROBLEM STATEMENT

Odd-even transposition sorting is designed for networks. In networks, the compare-exchange
operation is used to compare the elements. We found that the time taken for sorting by OETSN
was the same for all test cases such as uniform, sorted, zero, Gaussian, staggered and bucket.
The sequential and parallel time complexity was O(n2) and O(n), respectively for OETSN
using any kind of test case.

In our approach, we reduced the time complexity O(n) to O(1) over two types of test case,
which are sorted and zero. We have used the the bubble sort technique. If the data are sorted
and unique, bubble sorting requires only one pass and then terminates the programme. In our
approach we used this technique, and are able to reduce the number of levels in the network
and the time complexity for sorted and zero test cases.

PARALLEL OETSN ALGORITHM

It is easy to parallelise OETSN algorithm (Grama et al., 1994). Compare-exchange operation
was performed simultaneously on each pair of elements. There are two cases: 1) when n=p
where ‘p’ is the number of processing elements and ‘n’ is the number of elements to be sorted.
In both the phases compare-exchange operation is performed on the right adjacent element.
This required time O(1). A total of ‘n’ phases is performed. So the parallel run time of this
formulation is O(n). 2) When p<n or p>n initially, each process is assigned a block of n/p

Odd-Even Transposition Sorting Network (OETSN)

335Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

elements, which it sorted internally in O((n/p)(n/p)) time. After these processes, ‘p’ phases
(p/2 odd and p/2 even) are executed. During each phase O(n) comparisons are performed and
time O(n) is spent in communication. We did not use any local sort before the odd-even phase.
The parallel run time of this formulation is shown in equation (1).

[1]

Since the sequential complexity of OETSN is O (n2), the speedup (S) of this formulation is
shown in equation (2).

()
()nO

p
nO

nOS
+








=

2

2

2

 [2]

PROPOSED MODIFIED PARALLEL OETSN ALGORITHM

ALGORITHM 1: Proposed Modified OETSN Algorithm
Input: Unsorted List A, Number of threads
Output: Sorted List A
fori= 1 to N/2 do

Initialise the P array to zero for GPU ; /* N/2 number of passes */
Odd Phase(A, P, N) ; /* comparison of odd positions of array */
Even Phase(A, P, N) ; /* comparison of even positions of array */

if (i==0 OR i== N/4 OR i==N/8 OR i==N/16);/* check whether list has been sorted, then
not performing any swaps at 0,1/8,1/4,1/2 passes */

then
Evalute (P) ; /* sum the number of swap of various threads */
Read sum from GPU ;
if sum == 0 then /* number of swap has been done */
break: /* terminate if no swap performed */

 end
end

end

The proposed sorting algorithm is inspired by the traditional bubble sorting algorithm. In
the traditional bubble sorting algorithm, we compared the adjacent elements. If the elements
are sorted, no swapping is done. Traditional bubble sorting takes ‘n’ passes to complete the
sorting in the best case. In the modified version of bubble sorting, we used the flag variable to
keep the track of swapping. If the variable highlighted swapping, the next pass is executed. The
same concept is applied to the odd-even transposition sorting algorithm using GPU. Let the
number of elements to be sorted be ‘N’ and ‘T’ is the number of threads. The number of threads

Neetu Faujdar and SP Ghrera

336 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

is restricted to a maximum limit of the hardware. According to the hardware configuration,
our hardware support is T=1024 threads in one block. In our algorithm, we have used three
functions.

1. Odd ()

2. Even ()

3. Evaluate ()

The odd () function can generate a maximum number of threads of T=1024 while the
blocks are N/1024, where N is the data element. Similarly, the even () function has the same
configuration as the odd () function. The evaluate () function does not execute with every
iteration. Its data element is based on the number of threads and varies according to T. This
evaluate () function is evaluated in sequential manner in a single block and uses single data.
The reason for keeping it sequential is that the thread value is limited to T=1024.

In GPU instead of using a single variable array we used two variable arrays i.e. ‘P’ and
‘T’. ‘T’ is equal to the number of threads and ‘P’ is the sum of total swapping performed in
the proposed algorithm. The odd-even pass is executed. If there is no swapping then the sum
of ‘P’ was zero and we got the sorted array. This gave an added advantage as the sorted and
unique test cases did not need to be executed in the code on the GPU unnecessarily as is the
case when the data are sorted or unique. On the other hand, a slight increase in the execution
time for the uniform, staggered, bucket and Gaussian test cases was noted. This made them
unable to take advantage of the above proposed approach. We observed the same with N/2,
N/4 and N/8 of the data.

We used the GPU NVDIA GeForce GTX 460 with compute capability 2.1 but the new
version of GPU cards come with the compute capability 3.0, which has unified memory for
GPU and CPU, and can therefore, further enhance the performance of the suggested algorithm.
Future enhancements may be possible to get a further speedup. For instance, we may use the
scan function to speed up the sum up. The functionality of the proposed algorithm is described
through the flowchart shown in Figure 3. The green-coloured box shows the modules running
on GPU. The proposed algorithm is more efficient in comparison with the existing techniques
using two types of test case i.e. zero and sorted test cases.

Sorting Benchmark

We have tested the sequential, parallel and proposed modified parallel OETSN algorithms on
six types of test case (uniform, sorted, zero, bucket, Gaussian and staggered) (Matsumoto &
Nishimura, 1998; Daniel et al, 2009; Leischner, Sanders , 2010). We varied the data from 1000
to 2500000 and the thread in multiples of two from 1 to 1024.

1. Uniform test case: In this test case values are picked randomly from 0 to 231.

2. Gaussian test case: In this test case the distribution of data is created by taking the average
of four randomly picked values from the uniform distribution.

3. Zero test case: In this test case a constant value is used.

Odd-Even Transposition Sorting Network (OETSN)

337Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

4. Bucket test case: For p ∈ N, the input of size ‘N’ is split into ‘p’ blocks, such that the first n/
p2 elements in each are random numbers in [0, 231/p−1], the second n/p2 elements in [231/p,
232/p− 1], and so forth.

5. Staggered test case: For p ∈ N, the input of size ‘N’ is split into ‘p’ blocks such that if the
block index is i≤ p/2, all its n/p elements are set to a random number in [(2i− 1)231/p, (2i)
(231/p− 1)].

6. Sorted test case: In this test case sorted uniformly distributed values are taken.

Hardware Configuration

We ran the algorithms on a Windows 7 32-bit operating system Intel® core™ I3 processor
530@ 2.93 GHz machine. The system has a GeForce GTX 460 graphic processor with (7
multiprocessors X (48) CUDA cores\MP) = 336 CUDA cores. There are a maximum of 1536
threads per multiprocessor and 1024 threads per block. A system having the CUDA runtime
version is 6.0. The total amount of global memory of the system is 768 Mbytes and the total
amount of constant memory is 65536 bytes. The total amount of shared memory per block is
49152 bytes. The system has a total number of registers available per block of 32768 and its
warp size is 32. The maximum size of each dimension of a block is 1024 x 1024 x 64 and the
maximum size of each dimension of a grid is 65535 x 65535 x 65535.

Figure 3. Flowchart for the proposed modified parallel OETSN.

Neetu Faujdar and SP Ghrera

338 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Experimental Evaluation of Sequential and Parallel OETSN Algorithm

Sorting benchmark is used for testing the algorithms. We have tested the sequential and parallel
OETSN algorithms on six types of test case using GPU computing that used CUDA hardware.
Table 1 shows the execution time in seconds of the sequential OETSN algorithm. ‘N’ is the size
of the data used for the particular cases here for the performance analysis of the algorithm. The
value of ‘N’ varied from 1000 to 2500000. Table 2 shows the execution time in seconds of the
parallel OETSN algorithm using different types of test cases. The size of the data is denoted by
‘N’. The number of threads is denoted by ‘T’. The values of ‘T’varied from 1 to the maximum
of 1024. The threads increased in the power of 2. The CUDA hardware version 2.1 has a total
of 1024 threads per block so the maximum value of thread is selected as 1024. In Table 1, the
sequential execution time is shown for the six types of test case. Table 1 shows, that the zero
test case has less execution time in comparison to the others. It has less execution time for all
the values of ‘N’. The sorted test case has less execution time in comparison to the bucket,
staggered, uniform and Gaussian tests for all the values of ‘N’. The remaining test cases has
nearly equal execution time as shown in Table 1. This is because in the zero and sorted test
cases, the comparison is performed to the adjacent element and swapping is not required for
both. Comparison and swapping are performed in the remaining test cases.

Table 1
Execution Time in Seconds of Sequential OETSN Using Different Types of Test Case

N Uniform Gaussian Zero Staggered Bucket Sorted
1000 0.016 0.016 0.001 0.015 0.016 0.015
5000 0.062 0.062 0.015 0.078 0.063 0.031
10000 0.203 0.187 0.078 0.187 0.234 0.062
50000 4.602 4.681 0.905 4.145 5.704 0.842
100000 18.86 19.282 3.26 16.645 22.687 3.292
500000 496.988 501.091 82.681 425.274 584.469 101.713
1000000 2067.263 2050.446 400.33 1861.966 2734.954 577.812
1500000 4671.309 5135.357 912.34 4843.285 6035.218 1342.607
2000000 8095.204 7666.997 2072.224 7958.578 11156.45 4119.251
2500000 17099.89 17128.84 3719.095 16171.63 15732.54 6368.703

Next, we have evaluated the speedup achieved by the parallel OETSN over the sequential
OETSN. Speedup measures the performance gain achieved by parallelising a given application
over sequential application. In Tables 1 and 2, we have evaluated the execution time in seconds
of sequential and parallel OETSN. Using equation (2) and the results from Table 1 and 2, the
speedup is calculated. The speedup results are described in Table 3. From Table 2 and 3, it can be
observed that the execution time is minimum when the number of threads is 512. The speedup
is increased by eight times more than the sequential code when T=512. The performance of
the algorithm got degraded at T=1024. The reason behind this is that the data we took is not
evenly divided over the threads. So, some of the threads are executed ideally and degraded
the overall performance of the algorithm. The speedup for all the six mentioned test cases is

Odd-Even Transposition Sorting Network (OETSN)

339Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

shown in Figures 4 to 9. The X-axis represent the number of threads, the Y-axis represent the
speedup achieved by the parallel OETSN and the Z-axis represent the size of the dataset.

Table 2
Execution Time in Seconds of Parallel OETSN Using Different Types of Test Case

N/T Test case 1 2 4 8 16 32 64 128 256 512 1024

1000

Uniform 0.019 0.014 0.009 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.005

Gaussian 0.019 0.014 0.009 0.006 0.005 0.005 0.005 0.004 0.004 0.004 0.006

Zero 0.019 0.014 0.009 0.006 0.005 0.005 0.004 0.004 0.004 0.004 0.005

Staggered 0.019 0.014 0.009 0.007 0.005 0.004 0.004 0.004 0.003 0.003 0.005

Bucket 0.019 0.014 0.009 0.006 0.005 0.004 0.004 0.004 0.004 0.004 0.007

Sorted 0.019 0.014 0.009 0.006 0.006 0.005 0.005 0.005 0.004 0.004 0.005

5000

Uniform 0.441 0.322 0.173 0.096 0.056 0.035 0.026 0.023 0.023 0.023 0.025

Gaussian 0.442 0.321 0.173 0.096 0.055 0.034 0.026 0.025 0.024 0.024 0.026

Zero 0.441 0.321 0.167 0.091 0.051 0.031 0.021 0.021 0.021 0.021 0.022

Staggered 0.441 0.322 0.171 0.093 0.052 0.033 0.029 0.023 0.022 0.021 0.025

Bucket 0.442 0.322 0.169 0.092 0.052 0.033 0.025 0.023 0.023 0.023 0.025

Sorted 0.439 0.319 0.168 0.168 0.091 0.054 0.024 0.024 0.023 0.023 0.032

10000

Uniform 1.742 1.265 0.667 0.358 0.197 0.114 0.071 0.066 0.062 0.061 0.079

Gaussian 1.744 1.263 0.667 0.359 0.197 0.115 0.072 0.064 0.061 0.061 0.079

Zero 1.733 1.257 0.643 0.336 0.182 0.104 0.065 0.056 0.053 0.052 0.071

Staggered 1.744 1.271 0.657 0.345 0.188 0.108 0.067 0.06 0.058 0.058 0.074

Bucket 1.744 1.265 0.649 0.339 0.185 0.108 0.07 0.065 0.062 0.062 0.079

Sorted 1.733 1.256 0.643 0.335 0.182 0.104 0.065 0.057 0.054 0.054 0.072

50000

Uniform 43.438 31.472 16.462 8.602 4.499 2.41 1.353 1.094 1.09 1.08 1.235

Gaussian 43.452 31.433 16.43 8.588 4.492 2.406 1.351 1.093 1.091 1.083 1.235

Zero 43.328 31.338 15.931 8.02 4.089 2.16 1.204 0.943 0.925 0.919 1.078

Staggered 43.574 31.69 16.276 8.273 4.249 2.247 1.255 0.999 0.988 0.984 1.134

Bucket 43.573 31.535 16.081 8.092 4.127 2.228 1.24 1.11 1.09 1.08 1.231

Sorted 43.248 31.282 15.884 7.996 4.073 2.153 1.195 0.939 0.919 0.916 1.069

100000

Uniform 213.99 130.446 70.589 36.806 19.111 9.994 5.457 4.151 4.129 4.125 4.948

Gaussian 213.996 130.335 70.571 36.805 19.119 9.995 5.459 4.151 4.131 4.131 4.951

Zero 213.105 129.583 69.112 34.693 17.491 9.063 4.882 3.579 3.547 3.539 4.378

Staggered 213.938 130.885 70.171 35.605 18.077 9.373 5.069 3.786 3.757 3.751 4.564

Bucket 213.831 130.282 69.621 34.961 17.626 9.991 4.975 3.735 3.811 3.133 4.947

Sorted 213.189 129.58 69.117 34.681 17.491 9.053 4.877 3.578 3.543 3.535 4.366

500000

Uniform 4770.3 3349.3 1749.8 914.91 472.11 244.11 130.31 98.141 97.991 96.471 119.91

Gaussian 4755.1 3340.3 1749.6 914.91 472.11 243.81 130.21 98.071 98.112 96.431 119.91

Zero 4686.2 3264.3 1683.6 862.11 432.12 220.21 116.11 83.841 83.651 82.021 105.81

Staggered 4705.3 3295.6 1705.1 878.7 438.91 228.21 120.51 88.861 88.781 87.211 110.21

Bucket 4694.9 3287.8 1694.3 869.1 435.11 226.31 117.41 92.651 91.151 90.201 119.91

Sorted 4686.2 3264.4 1683.6 861.9 431.81 220.12 115.91 83.781 83.591 83.096 105.81

1000000

Uniform 18833.7 13246.5 6886.4 3698 1799.5 921.41 488.11 359.71 359.61 358.11 476.81

Gaussian 18805.3 13215.4 6855.2 3578.4 1799.5 922.31 488.11 359.61 359.41 358.71 476.41

Zero 18716.1 13055.2 6755.8 3505.9 1719.1 873.71 459.21 331.31 330.91 330.92 420.71

Staggered 18759.6 13170.4 6844.5 3556.4 1746.9 890.11 468.61 341.41 341.21 340.71 438.31

Bucket 18746.3 13105.1 6821.3 3544.3 1724.8 884.5 461.91 334.81 332.31 331.61 476.71

Sorted 18736.3 13095.8 6798.5 3526.7 1718.9 872.8 459.41 333.61 332.91 332.11 420.51

1500000

Uniform 60324.2 31243.2 15348.8 8155.1 4299.8 2078.1 1096.3 808.1 807.81 806.61 1071.5

Gaussian 60297.8 31199.2 15329.7 8134.3 4255.2 2072.6 1096.3 807.91 807.81 806.31 1071.8

Zero 60155.4 31056.2 15255.4 8005.8 4150.9 1964.2 1031.3 744.71 743.61 743.11 946.21

Staggered 60266.4 31178.3 15299.8 8099.2 4239.3 1999.3 1052.4 766.81 766.61 765.17 985.81

Bucket 60243.8 31141.2 15279.4 8055.3 4199.7 2070.6 1039.1 752.31 751.91 750.31 995.31

Sorted 60196.4 31098.3 15299.4 8023.3 4162.9 1964.1 1030.9 744.21 743.51 743.31 946.21

Neetu Faujdar and SP Ghrera

340 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

2000000

Uniform 90655.3 46143.2 24199.3 12693.9 6678.4 3688.1 1948.4 1435.5 1435.1 1434.5 1903.5

Gaussian 90605.4 46099.4 24210.3 12649.9 6648.9 3689.8 1948.5 1435.4 1434.7 1433.9 1902.7

Zero 90395.3 45905.3 24065.4 12544.4 6533.5 3494.9 1833.7 1322.1 1321.2 1321.1 1681.6

Staggered 90555.4 46055.3 24188.5 12627.9 6633.4 3556.4 1869.1 1361.7 1361.7 1360.4 1855.9

Bucket 90498.9 45999.4 24148.8 12599.5 6598.9 3520.1 1842.6 1342.2 1340.2 1340.1 1806.9

Sorted 90445.4 45972.8 24105.4 12555.2 6555.3 3494.1 1832.9 1321.8 1320.2 1318.7 1742.9

2500000

Uniform 165205.3 82815.4 42674.4 23139.4 12349.2 7299.8 3041.9 2241.6 2241.6 2221.1 2797.2

Gaussian 165193.3 82793.5 42648.8 23099.8 12344.7 7291.4 3043.1 2241.4 2241.1 2241.1 2796.7

Zero 164560.8 82555.3 42556.4 23005.3 12259.8 7233.3 2866.2 2063.6 2063.1 2060.7 2623.4

Staggered 165149.3 82740.1 42631.9 23089.1 12316.4 7266.3 2917.1 2126.7 2126.5 2022.9 2677.5

Bucket 165105.9 82693.3 42599.3 23049.8 12299.2 7249.4 2881.5 2084.3 2027.1 2021.6 2680.1

Sorted 165060.8 82649.8 42574.7 23019.4 12268.5 7238.7 2862.1 2064.2 2072.1 2077.5 2622.1

Table 3
Speedup Achieved by Parallel OETSN Using Different Types of Test Case

N/T Test case 1 2 4 8 16 32 64 128 256 512 1024

1000

Uniform 0.84 1.14 1.78 2.67 3.2 3.2 4 4 4 4 3.2

Gaussian 0.84 1.14 1.78 2.67 3.2 3.2 3.2 4 4 4 2.67

Zero 0.05 0.07 0.11 0.17 0.2 0.2 0.25 0.25 0.25 0.25 0.2

Staggered 0.79 1.07 1.67 2.14 3 3.75 3.75 3.75 5 5 3

Bucket 0.84 1.14 1.78 2.67 3.2 4 4 4 4 4 2.29

Sorted 0.79 1.07 1.67 2.5 2.5 3 3 3 3.75 3.75 3

5000

Uniform 0.14 0.19 0.36 0.65 1.11 1.77 2.38 2.7 2.7 2.7 2.48

Gaussian 0.14 0.19 0.36 0.65 1.13 1.82 2.38 2.48 2.58 2.58 2.38

Zero 0.03 0.05 0.09 0.16 0.29 0.48 0.71 0.71 0.71 0.71 0.68

Staggered 0.18 0.24 0.46 0.84 1.5 2.36 2.69 3.39 3.55 3.71 3.12

Bucket 0.14 0.2 0.37 0.68 1.21 1.93 2.52 2.74 2.74 2.74 2.52

Sorted 0.07 0.1 0.18 0.18 0.34 0.57 1.29 1.29 1.35 1.35 0.97

10000

Uniform 0.12 0.16 0.3 0.57 1.03 1.78 2.86 3.08 3.27 3.33 2.57

Gaussian 0.11 0.15 0.28 0.52 0.95 1.63 2.6 2.92 3.07 3.07 2.37

Zero 0.05 0.06 0.12 0.23 0.43 0.75 1.2 1.39 1.47 1.5 1.1

Staggered 0.11 0.15 0.28 0.54 0.99 1.73 2.79 3.12 3.22 3.22 2.53

Bucket 0.13 0.18 0.36 0.69 1.26 2.17 3.34 3.6 3.77 3.77 2.96

Sorted 0.04 0.05 0.1 0.19 0.34 0.6 0.95 1.09 1.15 1.15 0.86

50000

Uniform 0.11 0.15 0.28 0.53 1.02 1.91 3.4 4.21 4.22 4.26 3.73

Gaussian 0.11 0.15 0.28 0.55 1.04 1.95 3.46 4.28 4.29 4.32 3.79

Zero 0.02 0.03 0.06 0.11 0.22 0.42 0.75 0.96 0.98 0.98 0.84

Staggered 0.1 0.13 0.25 0.5 0.98 1.84 3.3 4.15 4.2 4.21 3.66

Bucket 0.13 0.18 0.35 0.7 1.38 2.56 4.6 5.14 5.23 5.28 4.63

Sorted 0.02 0.03 0.05 0.11 0.21 0.39 0.7 0.9 0.92 0.92 0.79

100000

Uniform 0.09 0.14 0.27 0.51 0.99 1.89 3.46 4.54 4.57 4.57 3.81

Gaussian 0.09 0.15 0.27 0.52 1.01 1.93 3.53 4.65 4.67 4.67 3.9

Zero 0.02 0.03 0.05 0.09 0.19 0.36 0.67 0.91 0.92 0.92 0.74

Staggered 0.08 0.13 0.24 0.47 0.92 1.78 3.28 4.4 4.43 4.44 3.65

Bucket 0.11 0.17 0.33 0.65 1.29 2.27 4.56 6.07 5.95 7.24 4.59

Sorted 0.02 0.03 0.05 0.09 0.19 0.36 0.68 0.92 0.93 0.93 0.75

500000

Uniform 0.1 0.15 0.28 0.54 1.05 2.04 3.81 5.07 5.07 5.15 4.15

Gaussian 0.11 0.15 0.29 0.55 1.06 2.06 3.85 5.11 5.11 5.2 4.18

Zero 0.02 0.03 0.05 0.1 0.19 0.38 0.71 0.99 0.99 1.01 0.78

Staggered 0.09 0.13 0.25 0.48 0.97 1.86 3.53 4.79 4.79 4.88 3.86

Bucket 0.12 0.18 0.34 0.67 1.34 2.58 4.98 6.31 6.41 6.48 4.88

Sorted 0.02 0.03 0.06 0.12 0.24 0.46 0.88 1.21 1.22 1.21 0.96

Table 2 (continue)

Odd-Even Transposition Sorting Network (OETSN)

341Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

1000000

Uniform 0.11 0.16 0.3 0.56 1.15 2.24 4.24 5.75 5.75 5.77 4.34

Gaussian 0.11 0.16 0.3 0.57 1.14 2.22 4.2 5.7 5.71 5.72 4.3

Zero 0.02 0.03 0.06 0.11 0.23 0.46 0.87 1.21 1.21 1.21 0.95

Staggered 0.1 0.14 0.27 0.52 1.07 2.09 3.97 5.45 5.46 5.46 4.25

Bucket 0.15 0.21 0.4 0.77 1.59 3.09 5.92 8.17 8.23 8.25 5.74

Sorted 0.03 0.04 0.08 0.16 0.34 0.66 1.26 1.74 1.74 1.74 1.37

1500000

Uniform 0.08 0.15 0.3 0.57 1.09 2.25 4.26 5.78 5.78 5.79 4.36

Gaussian 0.09 0.16 0.33 0.63 1.21 2.48 4.68 6.36 6.36 6.37 4.79

Zero 0.02 0.03 0.06 0.11 0.22 0.46 0.88 1.23 1.23 1.23 0.96

Staggered 0.08 0.16 0.32 0.6 1.14 2.42 4.6 6.32 6.32 6.33 4.91

Bucket 0.1 0.19 0.39 0.75 1.44 2.91 5.81 8.02 8.03 8.04 6.06

Sorted 0.02 0.04 0.09 0.17 0.32 0.68 1.3 1.8 1.81 1.81 1.42

2000000

Uniform 0.09 0.18 0.33 0.64 1.21 2.19 4.15 5.64 5.64 5.64 4.25

Gaussian 0.08 0.17 0.32 0.61 1.15 2.08 3.93 5.34 5.34 5.35 4.03

Zero 0.02 0.05 0.09 0.17 0.32 0.59 1.13 1.57 1.57 1.57 1.23

Staggered 0.09 0.17 0.33 0.63 1.2 2.24 4.26 5.84 5.84 5.85 4.29

Bucket 0.12 0.24 0.46 0.89 1.69 3.17 6.05 8.31 8.32 8.32 6.17

Sorted 0.05 0.09 0.17 0.33 0.63 1.18 2.25 3.12 3.12 3.12 2.36

2500000

Uniform 0.1 0.21 0.4 0.74 1.38 2.34 5.62 7.63 7.63 7.7 6.11

Gaussian 0.1 0.21 0.4 0.74 1.39 2.35 5.63 7.64 7.64 7.64 6.12

Zero 0.02 0.05 0.09 0.16 0.3 0.51 1.3 1.8 1.8 1.8 1.42

Staggered 0.1 0.2 0.38 0.7 1.31 2.23 5.54 7.6 7.6 7.99 6.04

Bucket 0.1 0.19 0.37 0.68 1.28 2.17 5.46 7.55 7.76 7.78 5.87

Sorted 0.04 0.08 0.15 0.28 0.52 0.88 2.23 3.09 3.07 3.07 2.43

Figure 4. Speedup achieved by parallel OETSN using the uniform test case.

From Figure 4, the speedup for the uniform test case is observed. The 7 times more speedup is achieved
when thread (T) =512 and data size (N) =2500000 in comparison to the sequential OETSN. We have also
found that for T=1024, the speedup got decreased. This is because the data is not evenly distributed over
the threads and some threads are ideal, hence the performance of the algorithm is degraded.

Table 3 (continue)

Neetu Faujdar and SP Ghrera

342 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Figure 5. Speedup achieved by parallel OETSN using the Gaussian test case.

Figure 5 shows, the speedup for the Gaussian test case. Here we have achieved speedup
seven times greater for the thread (T)=512 and data size (N)=2500000 in comparison to the
sequential OETSN. The speedup difference can be seen at larger inputs, or we may say that
speedup is directly proportional to the number of threads and size of the input.

Figure 6. Speedup achieved by parallel OETSN using the zero test case.

Figure 6 shows, the speedup for a zero test case, highlighting that speedup is at least
two times greater at T=512 and N=2500000 in comparison to the sequential OETSN. This is
achieved in the zero test case.

Odd-Even Transposition Sorting Network (OETSN)

343Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Figure 7. Speedup achieved by parallel OETSN using the staggered test case.

Figure 7 shows, the speedup for the staggered test case. In this test case, speedup is eight
times greater at T=512 and N=2500000 in comparison to the sequential OETSN.

Figure 8. Speedup achieved by parallel OETSN using the bucket test case.

Figure 8 shows, the speedup for the bucket test case. The speedup increased by eight times
at T=512 & N=2000000 in comparison to the sequential OETSN. Speedup is less at N=500
due to the smaller amount of data.

Neetu Faujdar and SP Ghrera

344 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Figure 9. Speedup achieved by parallel OETSN using the sorted test case.

Figure 9 shows, the speedup for the sorted test case. The speedup is achieved three times
greater at T=512 and N=1000 in comparison to the sequential OETSN. But in other test cases
more speedup is achieved at N=2500000 or 2000000. This is because comparison is performed
to the adjacent element only. There is no swapping performed as the data is already sorted.

In conclusion, we found that speedup is directly proportional to the number of threads and
size of data in most of the tests. Maximum speedup is achieved by the bucket and staggered
test case i.e. eight times greater in comparison to the sequential OETSN. Minimum speedup is
achieved by the zero test case i.e. two times. We also found that in some cases good speedup
is also achieved at N=1000 and 5000 at nearly seven and eight times greater.

EXPERIMENTAL EVALUATION OF PROPOSED MODIFIED PARALLEL
OETSN ALGORITHM

Testing of proposed modified parallel OETSN algorithm is done on the sorting benchmark using
GPU computing on CUDA hardware. Table 4 shows the execution time in seconds of proposed
modified parallel OETSN algorithm using different types of test case. By examining Table 4,
we found that the proposed approach is very efficient in comparison to the parallel OETSN
only for the zero and sorted test cases. The execution time comparison for the sorted and zero
test cases of parallel and proposed modified parallel OETSN are shown in Figures 10 and 11.

The results obtained in Table 4 are justified with the proposed algorithm discussed above.
In the zero and sorted test cases, data did not require any swapping. In the odd-even module
an evaluation function is called after one pass. It is a serial function, which added the number
of swaps after every function was performed. The number of swaps is zero for the sorted and
zero test case, so the algorithm is terminated. Now in the case of other test cases, we do not
know how the data are placed, but we still tried to take advantage of the proposed approach.
However, it added an extra overhead on the execution time of the programme of the remaining
test cases.

Odd-Even Transposition Sorting Network (OETSN)

345Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Figures 10 and 11 are shown with the sub-figures from (a) to (j). In all the sub-figures the
X-axis represent the number of threads and the Y-axis represent the execution time in seconds.
The execution time comparison of the zero and sorted test case of parallel OETSN and the
proposed modified parallel OETSN is shown in Figure 10 and 11. The analysis of Figures 10
and 11 show that the execution time of the proposed modified parallel OETSN algorithm is
much less compared to that of the existing parallel OETSN algorithm. The scale of the Y-axis
was taken in logarithmic, using base to the power 2 because the execution time of the proposed
approach is much less in comparison to the existing one.

Figure 10 describes the execution time comparison of the existing parallel OETSN and
proposed modified parallel OETSN over the zero test case. As the modified parallel OETSN is
exploiting the nature of the data, we got better results in all the cases of data size from N=1000
to 2500000. For the small data set we could see that the execution time of modified parallel
OETSN was trending towards the existing parallel OETSN. This is due to the fact that each
tread had very little data elements to sort.

Figure 11 compares the execution time comparison of the parallel OETSN and modified
parallel OETSN over the sorted test case. The zero test case was the special case of the sorted
data. There is no swapping in both cases, and so, the trends of the modified OETSN are almost
similar to those of the zero test case.

Table 4
Execution Time in Seconds of Modified Parallel OETSN Using Different Types of Test Case

N/T Test case 1 2 4 8 16 32 64 128 256 512 1024

1000

Uniform 0.039 0.03 0.012 0.008 0.007 0.006 0.006 0.006 0.005 0.005 0.005

Gaussian 0.029 0.019 0.012 0.008 0.006 0.004 0.004 0.004 0.004 0.004 0.006

Zero 0.0004 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0005

Staggered 0.029 0.02 0.012 0.008 0.007 0.006 0.006 0.005 0.004 0.004 0.006

Bucket 0.029 0.019 0.011 0.008 0.006 0.004 0.004 0.003 0.003 0.003 0.005

Sorted 0.00017 0.00016 0.00009 0.00008 0.00007 0.00006 0.00005 0.00005 0.00004 0.00004 0.00009

5000

Uniform 0.656 0.435 0.234 0.128 0.072 0.042 0.031 0.027 0.026 0.025 0.028

Gaussian 0.657 0.437 0.235 0.129 0.072 0.042 0.033 0.026 0.025 0.024 0.029

Zero 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0006

Staggered 0.657 0.462 0.24 0.129 0.07 0.042 0.032 0.032 0.028 0.029 0.029

Bucket 0.656 0.43 0.227 0.122 0.069 0.041 0.033 0.026 0.025 0.025 0.029

Sorted 0.00032 0.00025 0.00021 0.00013 0.00011 0.00008 0.00007 0.00007 0.00006 0.00006 0.00014

10000

Uniform 2.598 1.72 0.909 0.483 0.263 0.146 0.091 0.081 0.074 0.073 0.095

Gaussian 2.597 1.718 0.909 0.484 0.263 0.147 0.091 0.082 0.075 0.074 0.096

Zero 0.0005 0.0004 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0007

Staggered 2.6 1.825 0.932 0.483 0.259 0.142 0.088 0.078 0.072 0.072 0.094

Bucket 2.6 1.695 0.879 0.457 0.245 0.139 0.09 0.082 0.075 0.074 0.095

Sorted 0.00062 0.00037 0.00024 0.00013 0.00018 0.00009 0.00006 0.00007 0.00006 0.00006 0.00006

50000

Uniform 64.64 42.9 22.52 11.67 6.03 3.15 1.76 1.4 1.4 1.39 1.5

Gaussian 64.66 42.91 22.52 11.66 6.03 3.15 1.76 1.41 1.4 1.4 1.5

Zero 0.0025 0.0016 0.0009 0.0005 0.0003 0.0002 0.0001 0.0002 0.0002 0.0004 0.0007

Staggered 64.64 45.54 23.11 11.61 5.88 3.04 1.69 1.34 1.33 1.33 1.44

Bucket 64.64 42.25 21.81 11 5.58 2.89 1.62 1.4 1.4 1.4 1.5

Sorted 0.00255 0.00167 0.00087 0.00047 0.00026 0.00015 0.00013 0.00013 0.00011 0.00011 0.00013

100000

Uniform 225.65 174.34 94.25 48.95 25.27 13.12 7.1 5.33 5.31 5.31 6.04

Gaussian 223.12 174.21 94.24 48.96 13.12 7.11 5.34 5.34 5.32 5.31 6.04

Zero 0.006 0.0032 0.0018 0.0009 0.0005 0.0003 0.0002 0.0002 0.0003 0.0004 0.0007

Staggered 225.87 184.77 97.43 49.1 24.79 12.69 6.82 5.09 5.07 5.06 5.8

Bucket 224.53 171.3 92.32 46.7 23.57 12.04 6.51 4.98 4.18 4.02 6.04

Sorted 0.00584 0.00321 0.00178 0.00091 0.00054 0.00028 0.00017 0.00016 0.00015 0.00015 0.00024

Neetu Faujdar and SP Ghrera

346 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

500000

Uniform 4870.8 3550.6 1921.6 1217.1 625.3 321.5 170.3 126.2 126.1 126 146.3

Gaussian 4870.2 3521.9 1911.7 1216.8 624.5 320.4 170.2 126.4 126.3 126.2 146.3

Zero 0.0258 0.0162 0.0083 0.0044 0.0022 0.0012 0.0007 0.0006 0.0006 0.0008 0.0011

Staggered 4770.2 3421.9 1811.7 1116.8 613 310.8 163.2 120.4 120.3 120.3 140.3

Bucket 4690.2 3391.9 1791.7 1196.8 583.5 295 155.4 124.3 123.6 123.2 146.4

Sorted 0.02576 0.01631 0.0084 0.00435 0.00226 0.00116 0.00072 0.00052 0.00052 0.00049 0.00057

1000000

Uniform 18999.6 13446.8 6986.6 3749.7 1999.8 1288.9 688.4 504.7 506.4 505.6 593.4

Gaussian 18931.6 13412.7 6931.6 3721.6 1958.7 1231.6 612.6 484.3 481.6 478.6 521.3

Zero 0.0519 0.0327 0.0169 0.0088 0.0043 0.0023 0.0013 0.001 0.0011 0.0013 0.0016

Staggered 18998.6 13487.8 6998.5 3798.4 1998.9 1287.6 698.9 584.3 581.6 578.6 621.3

Bucket 18811.6 13337.8 6838.5 3658.4 1985.8 1197.6 658.8 524.4 511.4 508.6 611.3

Sorted 0.05187 0.03265 0.01701 0.0088 0.00432 0.00222 0.00132 0.00106 0.00101 0.00096 0.00113

1500000

Uniform 60576.7 31467.7 15587.6 8368 4599.6 2251.7 1264.8 1156.6 1145.9 1142 1333.6

Gaussian 60521.7 31421.7 15531.9 8315.7 4523.6 2121.7 1212.6 1115.7 1106.7 1101.7 1312.7

Zero 0.0761 0.049 0.0252 0.0132 0.0075 0.0033 0.0018 0.0015 0.0015 0.0016 0.0022

Staggered 60621.7 31496.6 15588 8393.9 4589.9 2179.7 1289.8 1198.8 1188.7 1179.7 1389.7

Bucket 60511.7 31336.6 15428 8283.9 4679.6 2119.7 1199.9 1088.8 1078.7 1069.7 1319.7

Sorted 0.07624 0.049 0.02521 0.01322 0.00751 0.00338 0.00175 0.00138 0.00137 0.0013 0.00162

2000000

Uniform 90841.8 46324.8 24343.8 12843.7 6834.9 3873.7 2052.7 1665.9 1645.9 1611.7 2012.6

Gaussian 90759.3 46289.6 24289.6 12789.5 6779.6 3812.6 2012.6 1612.7 1601.7 1589.6 1989.6

Zero 0.1021 0.0652 0.0336 0.0176 0.009 0.0044 0.0023 0.0019 0.002 0.0021 0.0026

Staggered 90859.3 46389.9 24389.5 12889.2 6879.6 3899.9 2079.9 1612.7 1609.7 1604.6 1999.6

Bucket 90710.3 46124.9 24249.5 12779.2 6789.6 3789.9 2010.8 1582.7 1579.7 1564.6 1919.6

Sorted 0.10196 0.06515 0.03359 0.01761 0.00896 0.00436 0.00242 0.00181 0.00179 0.0017 0.0021

2500000

Uniform 167205.5 83211.7 42817.7 23834.8 12887.7 7934.9 3476.5 2483.7 2454.9 2444.7 2984.9

Gaussian 165803.7 83204.8 42253.6 23765.6 12754.6 7911.6 3432.7 2426.5 2423.5 2422.5 2932.3

Zero 0.1281 0.0813 0.042 0.0221 0.0119 0.0069 0.0025 0.0019 0.0018 0.0017 0.0029

Staggered 165898.7 83298.8 42353.9 23865.2 12854.6 7997.6 3489.9 2432.5 2424.5 2422.5 2989.3

Bucket 165721.7 83198.8 42213.9 23745.2 12744.6 7867.7 3399.7 2329.5 2324.5 2322.5 2929.3

Sorted 0.12802 0.0816 0.04196 0.0221 0.01186 0.00687 0.00286 0.00233 0.00228 0.0022 0.00267

Table 4 (continue)

Odd-Even Transposition Sorting Network (OETSN)

347Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Figure 10. Execution time comparison of parallel and modified parallel OETSN using the zero test
case.

Neetu Faujdar and SP Ghrera

348 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Figure 11. Execution time comparison of parallel and modified parallel OETSN using the sorted test
case.

The overall conclusion of the paper is that odd-even transposition sorting has the sequential
time complexity, O(n2). So, we parallelised the OETSN using GPU computing on CUDA
hardware and then proposed the modified parallel OETSN using GPU computing. In the

Odd-Even Transposition Sorting Network (OETSN)

349Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

proposed modified parallel OETSN, we reduced the number of levels of the network. After
testing, we found that the number of levels of the OETSN are reduced for two types of test
case i.e. zero and sorted test cases.

CONCLUSION AND FUTURE WORK

The suggested approach provided the best results when the data did not require swapping i.e.
the data are sorted or unique. This significantly reduced the execution time in comparison
to the existing one. The proposed approach achieved an improvement in execution time of
981661.6 times faster in the sorted test case and 904620.7 times in the zero test case using
2500000 elements and 1024 threads in comparison to the existing parallel OETSN. The time
complexity is reduced from O(n) to O(1) because the proposed approach is executed using
GPU. Some tasks are done sequentially on parallel machines so the time required in other types
of test cases is slightly increased. We tested six types of test case. We varied the data from
1000 to 2500000 and the thread in multiples of two from 1 to 1024. The suggested approach
can be further improved by using parallel reduction as we used linear addition. We used GPU
computing using CUDA hardware with the computing capability 2.1 to test the algorithms.
However, if the same algorithms will be used on hardware with the computing capability 3.0,
then they will give an added advantage of unified memory architecture.

ACKNOWLEDGEMENTS

This work is performed in the frame of research-concerted action. All experiments are done
in the research lab of Jaypee University of Information Technology, Waknaghat Solan, India.
My co-author supervised me in using GPU computing with CUDA hardware.

REFERENCES

Ajdari, J., Raufi, B., Zenuni, X., & Ismaili, F. (2015). A Version of Parallel Odd-Even Sorting Algorithm
Implemented in CUDA Paradigm. International Journal of Computer Science Issues, 12(3), 68-75.

Cederman, D., & Tsigas , P. (2009). GPU-quicksort: A practical quicksort algorithm for graphics
processors. Journal of Experimental Algorithmics (JEA), 14(4), 1-22.

Dowd, M., Perl, Y., Rudolph, L., & Saks, M. (1989). The Periodic Balanced Sorting Network. Journal
of the ACM, 36(4): 738-757..

Farmahini-Farahani, A., Duwe, H. J., Schulte, M. J., & Compton, K. (2013). Modular design of high
throughput, low-latency sorting units. IEEE Transactions on Computers 62(7), 1389-1402.

Grama, A., Gupta, A. & Karypis, G. (1994). Introduction to parallel computing: Design and analysis of
algorithms. Redwood City, CA: Benjamin/Cummings Publishing Company.

Greb, A., & Zachmann, G. (2006). GPU-ABiSort: Optimal parallel sorting on stream architectures.
Parallel and Distributed Processing Symposium, IPDPS. 20th International. IEEE, 1-10.

Jan, B., Montrucchio, B., Ragusa, C., Khan, F. G., & Khan, O. (2012). Fast parallel sorting algorithms
on GPUs. International Journal of Distributed and Parallel Systems, 3(6), 107-118.

Neetu Faujdar and SP Ghrera

350 Pertanika J. Sci. & Technol. 24 (2): 331 - 350 (2016)

Leischner, N., Osipov, V., & Sanders, P. (2010). GPU sample sort. Parallel and distributed processing
(IPDPS), IEEE International Symposium on IEEE, 1-55.

Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation
(TOMACS),1(8), 3-30.

Mozaffari, B. (2010). Optimization of odd-even transposition network. 2nd International Conference
on Education Technology and Computer, 3, 364-366.

Nadathur, S., Mark, H., & Michael, G . (2009). Designing efficient sorting algorithms for manycore
GPU. IEEE International Parallel and Distributed Processing Symposium, 1-10.

Faujdar, N., & Ghrera, S. P. (2015). Performance evaluation of merge and quick sort using GPU
Computing with CUDA. International Journal of Applied Engineering Research, 10(18), 39315-
393192 .

Peters, H., Schulz-Hildebrandt, O., & Luttenberger, N. Fast in-place sorting with CUDA based on bitonic
sort. Parallel Processing and Applied Mathematics (pp. 403-410). Springer: Berlin Heidelberg.

Quinn, M. J. (1994). Parallel computing: Theory and practice. McGraw-Hill, Inc.

Salloum, S. N., & Perrie, A. L. (1999). Fault tolerance analysis of odd-even transposition sorting
networks. Communications, Computers and Signal Processing, IEEE Pacific Rim Conference on.
IEEE, 1, 193-196.

Shifu, C., Qin, J., Xie, Y., Zhao, J., & Heng, P. A. (2009). A fast and flexible sorting algorithm with CUDA
(pp. 281-290). In S.-L. C. Arrems Hua (Ed.). Algorithms and Architectures for Parallel Processing .

Ushijima, M., & Fujiwara, A. (2005). Sorting algorithms based on the odd-even transposition sort and
the shearsort with DNA strands. FCS, 52-58.

Ye, Y., Du, Z., Bader, D. A., Yang, Q., & Huo, W. (2014). GPUMemSort: A high performance graphics
co-processors sorting algorithm for large scale in-memory data. Journal on Computing, 1(2), 23-28.

