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INTRODUCTION

Rainfall-Runoff modelling is significantly 
useful for the design and operation of various 
components of water resource projects 
like dams, barrages, water supply schemes 
etc. (Ghumman et al., 2011). Furthermore, 
the results of modelling could support 
hydrologists in decision-making in the face 
of bad predictions. It could, therefore, help 
water resource managers to prevent damage 
to private and public property as well as to 
avoid health and ecological dangers that can 
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ABSTRACT

The use of an artificial neural network (ANN) is becoming common due to its ability to analyse complex 
nonlinear events. An ANN has a flexible, convenient and easy mathematical structure to identify the 
nonlinear relationships between input and output data sets. This capability could efficiently be employed 
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nature and therefore, representing their physical characteristics is challenging. In this research, ANN 
modelling is developed with the use of the MATLAB toolbox for predicting river stream flow coming 
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the case of extreme events such as flooding and drought.  
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result from flooding. Due to the great temporal and spatial variability of precipitation patterns, 
watershed characteristics and the number of parameters involved in the process of modelling 
and due to the presence of complex nonlinear relationships in the transformation of rainfall into 
runoff, the rainfall-runoff relationship is one of the most difficult hydrologic problems facing 
water resource managers (Wu & Chau, 2011; Young & Liu, 2014). Many approaches have 
been applied to estimate runoff, such as distributed physical-based models, stochastic models, 
conceptual models and black box models (Tingsanchali & Gautam, 2000; Bahremand & De 
Smedt, 2008; Bahremand & De Smedt, 2010). Conceptual modelling uses an approximation 
to forecast daily, monthly or seasonal stream flows in the long term. The Stanford Watershed 
Model (SWM) is an instance of conceptual modelling, which uses 20-30 variables for runoff 
forecasting (El-Shafie et al., 2011). Due to the numerous parameters and the high complexity 
of parameter interaction, the optimisation of model parameters is mostly applied by method 
of trial-and-error. 

In order to overcome these difficulties, Artificial Neural Networks (ANNs) have been 
proposed. Indeed, they have recently received considerable attention as powerful computing 
systems in approaching hydrology problems due to their practical applications and ability 
to map the extremely complex and nonlinear systems among hydrological variables such as 
rainfall-runoff (Govindaraju, 2000; Wu & Chau, 2011). Since ANNs do not consider the physics 
of the problem, they are treated as black-box models; however, some researchers have recently 
reported that it is possible to detect physical processes in training ANN hydrologic models 
(Jain & Srinivasulu, 2004; Sudheer & Jain, 2004). Although there are extensive sorts of ANN 
algorithms, the main duty of all ANNs is to map a set of inputs into a set of outputs. ANNs are 
an information-processing system, which comprises many nonlinear interconnected elements 
called neurons (Srinivasulu & Jain, 2006). Researchers have investigated and concluded that 
ANNs gave better results when applied to problems that encountered noise or involved pattern 
generalisation, abstraction, diagnosis and recognition, and also in complex systems that do not 
have enough information or poor descriptions (Zhang & Govindaraju, 2000; Jain & Srinivasulu, 
2004). In addition, ANNs can be used in situations when input data are insufficient or obscured 
by nature. It can be summarised that ANN approaches have the capability to map the patterns 
of the highly unknown input and output relationship and overcome the aforementioned 
difficulties. So, many researchers have used the ANN algorithm to discover the rainfall-runoff 
relationship due to its ability to generalise patterns in cases of ambiguous and insufficient data 
and to incorporate a complex model without enough knowledge or probability distributions. 
However, the conceptual models need numerous parameters for modelling, but all the required 
data are not available in many watersheds. 

Another drawback of the conceptual method is using an approximation for prediction, 
which affects the accuracy of the results. In addition, the performance of the model is highly 
subjective and dependent on the user’s knowledge, ability, understanding of watershed 
characteristics and skill in running the model. Although this type of modelling provides 
reasonable accuracy, its application is limited due to the aforementioned difficulties (Gökbulak 
et al., 2015). All these gaps can be covered by ANNs.

The purpose of this study was to develop an artificial neural network (ANN) model for 
simulation of daily runoff. So, the application of ANN methodology for modelling daily 
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runoff discharge of the Bertam River was investigated in this research. The Bertam River is 
the main river feeding the Ringlet reservoir in Cameron Highland, Malaysia. Since the Ringlet 
reservoir is a hydropower reservoir system, the results of the present study could help the 
managers to predict the future discharge to predict the future hydropower as well as to control 
the danger of flooding in times of extreme phenomena. In order to develop a rainfall-runoff 
model, three parameters, such as daily observed rainfall, daily observed stream flow and 
daily evapotranspiration data (estimated by Hargreaves-Samani equation) from 2003-2012 
were used to train the network based on the back propagation learning rule. Afterwards, the 
performance of the developed ANN model in simulating the rainfall-runoff was assessed by 
four quantitative statistical indicators, such as the Nash-Sutcliffe Coefficient (E), Pearson 
Correlation of Coefficient (r), Root Mean Square Error (RMSE) and Mean Bias Error (MBE). 
The description of methods and the given resluts are described in detail in the following sections.

STUDY AREA AND DATA COLLECTION

The present research focused on the Cameron Highlands, Pahang, Malaysia. The Sultan Abu 
Bakar dam was constructed on the Bertam River in the district of Cameron Highland. The lake 
that was created from the construction of the dam is known as the Ringlet Reservoir (Figure 1).

The Ringlet Reservoir is nearly 3.2 km long and 0.4 km wide. It impounds the combined 
stream flow from Telom Tunnel and the Bertam River and other minor tributaries. The total 
Bertam catchment area is 159km2. The principal aim of this research was to build a model 
for simulating the Bertam River stream flow coming into the Ringlet Reservoir. An average 
monthly inflow of the Bertam River is shown in Figure 2. 

The data of rainfall, evapotranspiration and stream flow were collected to map the rainfall-
runoff relationship. Daily rainfall and stream flow data were gathered from Tenaga Nasional 
Berhad Company. Evapotranspiration data were estimated by the Hargreaves-Samani equation, 
which needs the observed temperature data for estimation. The temperature data were collected 
from the nearest station into the reservoir (Table 1).

Figure 1. Location of Ringlet Reservoir in Cameron Highland, Malaysia.
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Figure 2. Average monthly inflow of Bertam River coming into Ringlet Reservoir.

Table 1 
Weather Data Used as LARS-WG Input

Station Climate parameters Longitude Latitude Altitude 
(m)

Source

Kajiklim
Habu

Daily precipitation 101° 23' E 4° 25' N 1101.46 Tenaga Nasional 
Berhad

Cameron 
Highland

Daily min and max 
temperatures

101° 22' E 4° 28' N 1545 Meteorological 
Department

Evapotranspiration Estimation Method

In this research, the Hargreaves-Samani (HS) equation was employed to estimate the amount 
of evapotranspiration (ET0) at the reservoir (Lima et al., 2013; Raziei & Pereira, 2013). The 
required data for the HS method are only the observed minimum temperature (Tmin) and 
maximum temperature (Tmax) for the estimation of daily evapotranspiration (mm/day), which 
is expressed as:

ET0 = 0.0135 KRs Ra (Tmax- Tmin) 0.5 (Ta+17.8)					           [1] 

In this equation, 0.0135 is a constant, which converts American units to the international 
system of units. KRs is the adjustment coefficient of radiation. In the typical version of HS, the 
value of KRs is equal to 0.17. Ra is called extraterrestrial radiation, which will be explained in 
detail in the next section. Tmin, Tmax, Ta are minimum, maximum and average daily air temperature 
(°C), respectively (Hargreaves & Allen, 2004).

Extraterrestrial radiation (Ra). The extraterrestrial radiation (Ra) for each day of the 
year and for various latitudes is estimated from the solar declination, solar constant and the 
time of the year (Raes & MUNOZ, 2008). So, for a certain latitude, the Ra is constant for each 
day of every year. The Ra formula is expressed as follows:

Ra=(24*60/∏) Gsc dr [ws sin(α) sin(φ)+ cos(α) cos(φ) sin(ws)]			          [2]
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In this equation, Ra = extraterrestrial radiation (MJ m-2. Day-1); Gsc = solar constant (0.0820 
MJ m-2 min-1); dr = inverse relative distance Earth-Sun; ws = sunset hour angle (rad); α = latitude 
(rad); φ = solar declination (rad). The unit of latitude (α) is in radians, which has a positive sign 
for the northern hemisphere and negative sign for the southern hemisphere. The conversion 
equation from decimal degrees to radians is given by:

[Radians]= (∏/180)[decimal degrees]						            [3]

The inverse relative distance Earth-Sun and solar declination is expressed by:

dr=1+0.003 cos[(2∏/365)J]							              [4]

φ=0.409 sin[(2∏J/365)-1.39]							             [5]

In these equations, J is the number of days in any year (from 1 January to 31 December).
In order to compute the evapotranspiration based on the Hargreaves-Samani equation, 

minimum and maximum temperature data were collected from Cameron Highland station, 
and extraterrestrial radiation was calculated as a function of day and latitude. The latitude of 
the reservoir is 4.42.

Artificial Neural Networks Procedure

Artificial Neural Networks (ANNs) are information-processing systems that imitate the 
functions of the human brain. The ANN structure comprises a number of processing elements, 
which are called neurons, and the interconnections between the neurons are called weights 
(Kisi et al., 2013). In the architecture of ANN, neurons are classified in groups, and are called 
layers. The neurons in one layer have connections to those neurons in adjacent layers, but not 
to those in the same layer. The strength of the connection between two neurons in adjacent 
layers is known as their weight (Lake et al., 2009). Most of the developed ANN models use 
three layers: input, hidden and output layers. The input layer is the layer where the data import 
to the network, data processing is done in the hidden layer, and the output layer is where the 
results of imported data are generated. Overall, ANN models can be either ‘feed forward’ 
or feedback networks. The feed forward network is selected for use in this study. Based on 
this network, the information from the input layer passes into the output layer in the forward 
direction only. An important stage in developing an ANN model is its training to determine 
the weight matrix in order to learn the relationship between the data introduced. There are two 
principal types of training mechanisms: supervised and unsupervised. A supervised training 
method needs an external teacher or a guide to be involved throughout the training process. 
The main objective of this training is to minimise the error at the output layer by searching 
for a strong connection from generated outputs that are equal or close to the targets. The most 
popular supervised training method employed in the sciences and engineering for the training 
of the feed forward ANN is called the back propagation method (Srinivasulu & Jain, 2006). 
Back propagation is part of a gradient descent method used to train the ANN model. ANN has 
a parallel processing system that interconnects the neural computing elements. The system 
architecture is illustrated in Figure 3 (Shirke et al., 2012).



Aida Tayebiyan, Thamer Ahmad Mohammad, Abdul Halim Ghazali and Syamsiah Mashohor

324 Pertanika J. Sci. & Technol. 24 (2): 319 - 330 (2016)

Figure 3. Architecture of back propagation ANN model.

The many neurons (also known as ‘nodes’) of the ANN process the information. The signals 
are transferred by employing the connecting links. These links have associated weights, which 
will be multiplied by the incoming signal (input). Furthermore, the output signal is determined 
using activation functions to the net input. There are different learning mechanisms, which 
help the ANN to discover knowledge (Kohonen, 2012).

In the ANN structure, each layer comprises several nodes. The layers are interconnected by 
associated weights. Each node in the input layer (k=1,2,..,m) disseminates the input signal to the 
hidden layer. Any hidden node (i=1,2,…,n) calculates its weighted input signals according to:

Uink=bi+XkWki								                   [6]

In this equation, Wki is an associated weight between input layer node (k) and output layer 
node (i), Xk is an input signal and bi is the weight for any bias. Later, the current formulation 
will be used to apply the activation function in order to calculate the output signal from any 
input signal according to:

Ui=f(Uink)									                [7]

The neurons go through an activation function to generate the result. The system, therefore, 
needs continuous-transfer functions in order to determine the output of neurons based on its 
input. The most common transfer functions are identity functions, binary functions, binary 
sigmoid (Logistic) functions and binary sigmoid (Hyperbolic Tangent) functions. In the present 
research, the sigmoid function is used (Ehret, 2014). This transfer function is a continuous, 
differential and monotonically increasing function, which is typically employed in back 
propagation network. Later, the signal transmits from the second to third layer and the error 
is transmitted from the output layer back to the earlier layers. This process is called back 
propagation because the output error goes back to the input nodes in order to revise the weights.

ANN learning process. The learning process is a procedure that modifies the network 
weights and biases. The duty of the learning process is to train the network system to do some 
tasks. There are three different learning rules: supervised learning, unsupervised learning and 
reinforcement learning. In the current research, supervised learning is used.

The system will be trained based on the training data to map the relationship between 
input-output. When the inputs are imported to the network, the outputs will be compared with 
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the targets. In this step, the learning rule is employed to modify the weights and biases of the 
system in order to decrease the difference between the outputs and targets. 

ANN training procedure. An ANN is used to discover the relationship between the input 
and output data. Several techniques can be employed to assign a strength connection among data 
sets. One method is to set the weights based on prior knowledge. This method cannot be applied 
for some models due to lack of information and knowledge. A neural network is an efficient 
way to overcome these difficulties. In this technique, the network will be trained by teaching 
patterns and letting it adjust its weights and biases based on the learning rules. The problem still 
exists of how to adjust the associated weights from the input layer to the hidden layer. In order 
to solve this problem, the back propagation learning rule is used. Based on the back propagation, 
the errors for the elements of the hidden layer are specified by back-propagating the errors 
from the elements of output layer. The weights of the network are adjusted by minimising the 
error between the target and computed outputs. The network weights are continuously revised 
until the minimum error is obtained (Nayak et al., 2013; Kisi et al., 2013). As a result, training 
pairs are chosen from the training set, and the network computes the outputs according to the 
inputs used for the training pair. The obtained result from the network is then compared with 
the outputs by the training pair. According to this result, the weights add biases to all neurons, 
modified by a coefficient is based on the discrepancy between actual output and calculated 
output (errors), the derivation of the sigmoid function and actual output. The amount of neuron 
weight adjustment depends largely on the learning rate (α), which is a single coefficient that 
is multiplied by all adjustments. A small learning rate does not allow the network to learn and 
therefore, it will capture a local minimum, meaning it will not discover more precise weights. 
However, large learning rates produce extremely poor network results. Therefore, selecting 
the proper learning rate is very important before starting ANN training (Shirke et al., 2012).

Model development. In the present research, an ANN was developed to map the rainfall-
runoff relationship. The more factors used, the more accurate results were obtained. Three 
types of data were therefore gathered: rainfall, evapotransipration and stream flow. The input 
layer comprised two layers (rainfall and evapotranspiration) and the stream flow constituted 
the output layer. 

The whole data set was divided into two subsets, including the training set and testing set. 
Seventy per cent of the data was used for training and the remaining 30 per cent comprised the 
testing set. In the training sets, the adjusted weights and biases of the network were determined, 
and the test set was employed to prevent the networks from being over-trained. The overall 
idea in selecting a good training set from the available data series was to have extreme events 
(including all minimum and maximum values in the training sets). 

Another factor, which is one of the most significant characteristics of ANNs, is the number 
of neurons in the hidden layers. If the number of neurons is insufficient, the network cannot 
configure the complex data set and the obtained results will be a poor fit. Conversely, if the 
number of neurons is too high, the time required for network training will be long, and the 
network might over-fit the data (Rodríguez-González et al., 2011). In the present research, the 
number of neurons was determined by trial and error. The best result was obtained using 10 
neurons. The proposed architecture was developed in order to predict the Bertam River runoff 
coming into the Ringlet Reservoir. The obtained results give valuable information to water 
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resource managers to operate the reservoir efficiently and protect the system from extreme 
events such as flooding.  

Model evaluation. The performance of the developed ANN model in simulating the 
rainfall-runoff was assessed by four statistical evaluation measurements: the Nash-Sutcliffe 
Coefficient (Riad et al., 2004), Pearson Correlation of Coefficient (r), Root Mean Square Error 
(RMSE) and Mean Bias Error (MBE) (Riad et al., 2004). RMSE and MBE statistics evaluate 
the efficiency of the model in terms of its ability to predict data from a calibrated model. The 
other statistics E and r quantify the effect of the ANN model in capturing the dynamic, complex 
and nonlinear rainfall-runoff processing. These statistical criteria are calculated according to 
the following equations 

Nash-Sutcliffe Coefficient (E)

						            [8]

(Correlation Coefficient (r)  

						             [9]

Root Mean Square Error (RMSE)

						          [10]

Mean Bias Error (MBE)

						          [11]

In these equations, the parameters Xmodel,i and Xobs,i are simulated and observed values, 
respectively and  is the mean value of observed data and n is the number of samples. 
Furthermore, Xi and Yi are the input and output values of the ANN model respectively and 
and  are the mean values of input and output data, respectively.

RESULTS AND DISCUSSION

An ANN was developed using three types of data: rainfall, evapotranspiration and stream 
flow. The available data covering the duration of 10 years (2003-2012) were employed in this 
research. The imported data used to build the ANN model were taken from the Bertam River 
catchment, Malaysia. The daily rainfall data were collected from the nearest station (Kajiklm 
Habu station) to the Ringlet reservoir, and daily evapotransipation data were estimated by the 
Hargreaves-Samani equation. Another required data set was stream flow, which was taken 
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from the Bertam River catchment and constituted the output layer. The units of stream flow 
were converted from m3/sec into mm/day and then used in the model. This conversion was 
made due to improve the network performance. The number of neurons and hidden layers was 
determined by trial and error. The results indicated that ANN could give the best output by 
using 10 neurons and three hidden layers.

A number of statistical measurements were calculated to evaluate the network performance 
in both training and test sets (Table 2). The Nash-Sutcliffe coefficient was used to specify the 
predictive power of the hydrological models, which obtained 0.77 in training sets and 0.74 in 
testing sets. These results show that the constructed network had an acceptable predictive power. 
The correlation coefficient is a measure of the strength and direction of the linear relationship 
between two or more variables. The results indicate that the ANN model had good ability to 
capture the relationship between input/output in both training and test sets. RMSE and MBE 
are frequently-used measures of the differences between values (sample values) predicted by 
a model and the values actually observed, and in this model the differences were found to be 
negligible. Overall, the evolution measurements illustrate the ability of the ANN as a predictor 
to simulate the observed data. The results indicate that the ANN model has good ability to 
capture the nonlinearity of input/output in both training and test sets. It could, therefore, be 
used as a predictor to simulate the rainfall-runoff model.	

Table 2 
Statistical Evaluation Measurements of the Ringlet Reservoir

Model Evaluation Training Set Test Set
Nash-Sutcliffe Coefficient (E) 0.77 0.74
Correlation Coefficient (r) 0.88 0.86
Root Mean Square Error (RMSE) 0.17 0.17
Mean Bias Error (MBE) 0.001 0.004

The comparison between daily observed (actual) and simulated (predicted) Bertam river 
stream flow data from 2003-2012 was calculated and sis hown in Figure 4. The coefficient of 
determination (R2) is the measurement that indicates the goodness fit of a model or represents 
how well data fit a statistical model. This measurement can vary from 0 to 1. The closest value 
to 1 shows the strongest fit between observed and simulated data. The R2 result was found to 
be 0.76 in this model, which is an acceptably good result.

Furthermore, the linear regression between observed stream flow (Y) and the simulated 
stream flow (X) was found, and the best line fit for simulation period (2003-2012) was 
determined (Eq. 12). This equation shows the general relationship between observed and 
predicted values. This equation can be used to validate the predicted value. For example, for 
predicting stream flow, observed rainfall and evapotranspiration data should be imported to the 
constructed model and the model should then be run to give the predicted (modelled) stream 
flow. After determination of the modelled stream flow value (X), Eq (11) can be used to modify 
this value for a more accurate stream flow (Y) reading. 

Y=0.9921X									              [11]
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Figure 4. Comparison between daily observed (actual) and simulated (predicted) Bertam River runoff 
from 2003-2012. 

CONCLUSION

In the present research, an Artificial Neural Network (ANN) was used to predict daily river 
runoff as a function of daily evapotranspiration and rainfall for the Bertam river stream flow 
coming into the Ringlet Reservoir in Cameron Highland, Malaysia. The back propagating 
learning rule was employed to train the network. The performance of the developed model was 
then evaluated by statistical evaluation measurements, such as the Nash-Sutcliffe Coefficient 
(E), Pearson Correlation of Coefficient (r), Root Mean Square Error (RMSE) and Mean Bias 
Error (MBE). The results indicated that ANN could capture the nonlinearity of rainfall-runoff 
modelling very well with 76% predictive power for simulation in hydrological models. The 
given results provide valuable information, which could help water resource managers to predict 
future stream flow into the reservoir, especially in extreme phenomena in order to mitigate the 
danger of damage. To improve the predictive power of the ANN model, it is recommended to 
include in the future other environmental factors as assessed parameters, such as deforestation, 
agricultural activities and land use.
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