Please use this identifier to cite or link to this item: https://ptsldigital.ukm.my/jspui/handle/123456789/578380
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZahid Khan (UTP)
dc.contributor.authorRadzuan B. Razali (UTP)
dc.contributor.authorHanita Daud (UTP)
dc.contributor.authorNursyarizal Mohd Nor (UTP)
dc.contributor.authorMahmud Fotuhi-Firuzabad (UTP)
dc.date.accessioned2023-11-06T03:01:01Z-
dc.date.available2023-11-06T03:01:01Z-
dc.date.issued2017-07
dc.identifier.issn0128-7680
dc.identifier.otherukmvital:115882
dc.identifier.urihttps://ptsldigital.ukm.my/jspui/handle/123456789/578380-
dc.descriptionState estimation plays a vital role in the security analysis of a power system. The weighted least squares method is one of the conventional techniques used to estimate the unknown state vector of the power system. The existence of bad data can distort the reliability of the estimated state vector. A new algorithm based on the technique of quality control charts is developed in this paper for detection of bad data. The IEEE 6-bus power system data are utilised for the implementation of the proposed algorithm. The output of the study shows that this method is practically applicable for the separation of bad data in the problem of power system state estimation.
dc.language.isoen
dc.publisherUniversiti Putra Malaysia Press
dc.relation.haspartPertanika Journals
dc.relation.urihttp://www.pertanika.upm.edu.my/regular_issues.php?jtype=2&journal=JST-25-3-7
dc.rightsUKM
dc.subjectNonlinear estimation
dc.subjectWeighted least squares method
dc.subjectBad data
dc.subjectChi-square test
dc.subjectNormalised residual test
dc.subjectGauss-Newton algorithm
dc.titleThe control chart technique for the detection of the problem of bad data in state estimation power system
dc.typeJournal Article
dc.format.volume25
dc.format.pages825-834
dc.format.issue3
Appears in Collections:Journal Content Pages/ Kandungan Halaman Jurnal

Files in This Item:
File Description SizeFormat 
ukmvital_115882+Source01+Source010.PDF299.15 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.