Please use this identifier to cite or link to this item: https://ptsldigital.ukm.my/jspui/handle/123456789/476260
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhassan Jasim Mohammed Al-Anzy.-
dc.date.accessioned2023-10-06T09:15:25Z-
dc.date.available2023-10-06T09:15:25Z-
dc.date.issued2015-
dc.identifier.otherukmvital:78668-
dc.identifier.urihttps://ptsldigital.ukm.my/jspui/handle/123456789/476260-
dc.descriptionSarjana Teknologi Maklumat-
dc.language.isoeng-
dc.publisherUKM, Bangi-
dc.relationFaculty of Information Science and Technology / Fakulti Teknologi dan Sains Maklumat-
dc.rightsUKM-
dc.subjectAutomatic driver drowsiness detection-
dc.subjectUsing HAAR algorithm-
dc.subjectSupport vector machine techniques-
dc.subjectDissertations, Academic -- Malaysia-
dc.titleAutomatic driver drowsiness detection using HAAR algorithm and support vector machine techniques-
dc.typetheses-
dc.format.pages70-
dc.identifier.callnoTL272.57.A434 2015 3 tesis-
dc.identifier.barcode001009-
Appears in Collections:Faculty of Information Science and Technology / Fakulti Teknologi dan Sains Maklumat

Files in This Item:
File Description SizeFormat 
ukmvital_78668+SOURCE1+SOURCE1.0.PDF
  Restricted Access
2.22 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.