Please use this identifier to cite or link to this item: https://ptsldigital.ukm.my/jspui/handle/123456789/457923
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoltane Mohamed
dc.date.accessioned2023-09-12T09:15:38Z-
dc.date.available2023-09-12T09:15:38Z-
dc.date.issued2005
dc.identifier.otherukmvital:1696
dc.identifier.urihttps://ptsldigital.ukm.my/jspui/handle/123456789/457923-
dc.language.isoeng
dc.publisherUKM, Bangi
dc.relationFaculty of Engineering and Built Environment / Fakulti Kejuruteraan dan Alam Bina
dc.rightsUKM
dc.subjectNeural networks (Computer science)
dc.titleArtificial Neural Networks (ANN) approach to PPG signal classification
dc.typetheses
dc.identifier.callnoQA76.87.S657 2005
Appears in Collections:Faculty of Engineering and Built Environment / Fakulti Kejuruteraan dan Alam Bina

Files in This Item:
File Description SizeFormat 
ukmvital_1696+ABSTRACT+ABSTRACT.0.PDF
  Restricted Access
1.26 MBAdobe PDFThumbnail
View/Open
ukmvital_1696+Source+Source.0.PDF
  Restricted Access
7.59 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.