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ABSTRACT

Digital predistortion is one of the most widely used techniques to linearize a power amplifier (PA) to 
reduce the error vector magnitude (EVM) distortion and spectral regrowth. By far, the lookup table (LUT) 
predistorters are most frequently used scheme to mitigate the effects of non-linear power amplifier. In 
this paper, a new algorithm of joint-polynominal LUT predistorter which attains the best linearization 
performance is proposed. The algorithm employs the hermite interpolation LUT, which has a higher 
accuracy of interpolation. Simulation results show that the proposed method provides a better rejection 
of EVM distortion and an improvement of 30-40% of adjacent channel leakage ratio (ACLR) for the 
wideband code division multiple access at a minimal memory usage.  
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INTRODUCTION

One of the most important aspects of 
wideband digital communication system is 
the use of complex modulation scheme to 
increase  spectral efficiency. These modulation 

schemes possess non-constant envelopes and 
high peak to average power ratios (PAPR). 
Transmission of these complex modulation 
schemes through a power amplifier results in 
spectral regrowth and low Peak to Average 
(PA) power efficiency.

Several baseband linearisation techniques 
have been proposed to resolve the conflict 
between the linearity and efficiency of PA 
(Soloveya 2015), and the complex-gain 
lookup table (LUT) (Teikari et al., 2004), 
(Feng et al., 2013) based digital predistorter 
is one of the most commonly used techniques 
due to its low complexity and fast convergence 
for adaptation. 
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It has been suggested that a linear interpolation  approximation (LUT) improves the 
accuracy of modelling the inverse PA characteristics (Feng et al., 2013) compared with non-
interpolated LUT. However, as the inverse function of the Lin-LUT PA characteristics is not a 
smooth curve, this would consequently lead to error vector magnitude (EVM) distortion and 
adjacent channel interference. In this work, a hermite interpolated complex-gain LUT (HMT-
LUT) is derived to improve the accuracy of modelling the inverse PA characteristic. This  in 
turn results in better attenuation of EVM distortion and adjacent channel interference hence 
requiring less LUT entries to be inhabited. The HMT-LUT has been validated to improve the 
predistorter performance in terms of power spectral density (PSD), adjacent channel leakage 
ratio (ACLR) and error vector magnitude at a minimal memory usage. The improvement of 
HMT-LUT is theoretically derived and evaluated through simulations.

Figure 1. The block diagram of the proposed adaptive DPD system
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SYSTEM MODEL ARCHITECTURE 

The power amplifier PA has non-linear characteristics both in dynamic and static 

situations. The static part consists of AM-AM and AM-PM conversion functions. The 

dynamic part consists of  memory effects whereby the output signal is dependent not only on 

the current input signal but also the input signal at a preceding state. In this brief, the PA is 

considered as memory-less (Saleh, 1981) whereby  and  represents the signal at 

the input and output of the PA respectively as shown in Figure 1. The input signal,  as 

in Figure 1 is predistorted using the LUT values with hermite interpolation by the 

predistortion block that operates on the modulated digital baseband signal prior to digital to 

analog conversion (DAC) and frequency up conversion. Assuming the input signal,  is 

a modulated complex baseband signal which is given as 
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The input signal is fed to the cascade of the baseband digital predistorter (DPD) and power 
amplifier (PA). The DPD distorts the modulated signal by applying a memoryless non-linearity 
to produce the predistorted signal Vd(t) as
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where the amplitude modulation and complex-gain of predistorter is represented by Vm and  
f(.), which explains the AM/AM and AM/PM responses of the PA. From here, the output signal 
of the PA is expressed as
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order to overcome this drawback, a linear interpolated LUT (Lin-LUT) is proposed in (I. Teikari 
et al., 2004), (Feng et al. 2013). The Lin-LUT technique employs linear interpolation between 
the adjacent LUT entries for both predistortion and LUT updates which has been shown to 
improve  performance. An inverse PA characteristic of Lin-LUT technique is shown in Figure 
2. The Lin-LUT is proven to be the model that inverses more accurately the characteristics of 
the PA compared with non-interpolated LUT (Faulkner et al. 1994). However, as the inverse 
function of Lin-LUT is not a smooth curve as in Figure 2, this would consequently lead to 
EVM distortion and adjacent channel interference. 

Figure 2. Inverse PA characteristics of Lin-LUT and HMT-LUT
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where   is the resolution of LUT indices? An inverse PA characteristic of HMT-LUT 

technique is shown in Figure 2. It can be clearly seen that the usage of hermite interpolation 

leads to a smooth curve between LUT as it requires more referenced information compared 

with linear interpolation. Besides, the first order LUT values of HMT-LUT are continuous 

across the boundary between the adjacent LUT indices (the th, th and th) which 

increases the accuracy of estimating the inverse PA characteristics. With the selection of   

as the order of 2, the divisions can be employed with logic shifters. This in turn results in 

better rejection of EVM distortion and adjacent channel interference while maintaining 

similar computational complexity with Lin-LUT. 
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where Tr is the resolution of LUT indices? An inverse PA characteristic of HMT-LUT technique 
is shown in Figure 2. It can be clearly seen that the usage of hermite interpolation leads to a 
smooth curve between LUT as it requires more referenced information compared with linear 
interpolation. Besides, the first order LUT values of HMT-LUT are continuous across the 
boundary between the adjacent LUT indices (the n-1th, nth and n+1th) which increases the 
accuracy of estimating the inverse PA characteristics. With the selection of Tr  as the order of 
2, the divisions can be employed with logic shifters. This in turn results in better rejection of 
EVM distortion and adjacent channel interference while maintaining similar computational 
complexity with Lin-LUT.
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SIMULATION RESULTS

The proposed algorithm has been evaluated using MATLAB, using Saleh Model’s PA (Saleh, 
1981), which possesses non-linear characteristics that can be expressed as
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where  and  are the amplitude and phase corresponding to the non-linear 

characteristic of the PA. The parameters , , , and 

 are considered in initial simulation which relates to memoryless PA with a gain 

of 2.16 dB and phase deviation of -22.87 . The simulations are performed using a wideband 

code division multiple access (WCDMA) signal with a bandwidth of 5MHz. The simulated 

output spectrums of the linearly amplified input signal (WCDMA) along with the PA under 

different conditions in terms of power spectral density (PSD) are shown in Figure 3. Spectral 

regrowth is prominent due to the non-linear characteristics of PA (Cavers, 1999), which 

consequently increase, the adjacent channel leakage ratio (ACLR). The ACLR is defined as 

the ratio of the power in the adjacent channel to the transmitted power. The proposed method 

(HMT-LUT) performs better in terms of linearity compared with non-interpolated LUT and 

linear interpolated LUT (Lin-LUT), hence reducing the ACLR about 11.8 dBc for the LUT 

size of 8 entries.  

This is expected as HMT-LUT provides an accurate approximation of inverse PA non-linear 

characteristics and better windowing samples between the LUT entries which requires less 

LUT to be inhabited. 
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where K(u) and ϕ(u) are the amplitude and phase corresponding to the non-linear characteristic 
of the PA. The parameters αa= 2.2 , βa = 0.23 , αp = -4.033, and βp = 9.104 are considered in 
initial simulation which relates to memoryless PA with a gain of 2.16 dB and phase deviation 
of -22.87°. The simulations are performed using a wideband code division multiple access 
(WCDMA) signal with a bandwidth of 5MHz. The simulated output spectrums of the linearly 
amplified input signal (WCDMA) along with the PA under different conditions in terms of 
power spectral density (PSD) are shown in Figure 3. Spectral regrowth is prominent due to 
the non-linear characteristics of PA (Cavers, 1999), which consequently increase, the adjacent 
channel leakage ratio (ACLR). The ACLR is defined as the ratio of the power in the adjacent 
channel to the transmitted power. The proposed method (HMT-LUT) performs better in terms 
of linearity compared with non-interpolated LUT and linear interpolated LUT (Lin-LUT), 
hence reducing the ACLR about 11.8 dBc for the LUT size of 8 entries. 

This is expected as HMT-LUT provides an accurate approximation of inverse PA non-
linear characteristics and better windowing samples between the LUT entries which requires 
less LUT to be inhabited.

Figure 3. Simulated WCDMA signal spectrum before and after predistortion (i) Without DPD, (ii) DPD without 
interpolation (iii) DPD with linear interpolation and (iv) DPD with hermite interpolation

 
 

 

 

 

 

 

Figure 3.  Simulated WCDMA signal spectrum before and after predistortion (i) 

Without DPD, (ii) DPD without interpolation (iii) DPD with linear interpolation 

and (iv) DPD with hermite interpolation. 

To have a similar comparison, the simulation is further assessed in terms of Error Vector 

Magnitude (EVM) with the same Saleh model PA non-linear characteristics. The EVM is 

defined as the ratio of power of the error vector to the root mean square (RMS) power of the 

reference. The result in Figure 4 shows that the HMT-LUT improves the EVM of WCDMA 

at least by 6 dB for the LUT size of 8 entries with 500 iterations. As the iteration increases, 

the EVM improves as shown in Figure 4 and summarised in Table I for non-interpolated 

LUT, linear interpolated LUT (Lin-LUT) and hermite interpolated complex-gain LUT 

(HMT-LUT) respectively. The proposed method significantly reduces the EVM distortion as 

the approximation errors introduced by HMT-LUT from modelling the inverse PA 

characteristics are lower compared with non-interpolated LUT and linear interpolated LUT. 

As a conclusion, a significant improvement of adjacent channel interference and EVM 

distortion is observed with the usage of HMT-LUT while maintaining  similar computational 

complexity with linear interpolated LUT (Lin-LUT). 
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To have a similar comparison, the simulation is further assessed in terms of Error Vector 
Magnitude (EVM) with the same Saleh model PA non-linear characteristics. The EVM is 
defined as the ratio of power of the error vector to the root mean square (RMS) power of the 
reference. The result in Figure 4 shows that the HMT-LUT improves the EVM of WCDMA 
at least by 6 dB for the LUT size of 8 entries with 500 iterations. As the iteration increases, 
the EVM improves as shown in Figure 4 and summarised in Table I for non-interpolated 
LUT, linear interpolated LUT (Lin-LUT) and hermite interpolated complex-gain LUT (HMT-
LUT) respectively. The proposed method significantly reduces the EVM distortion as the 
approximation errors introduced by HMT-LUT from modelling the inverse PA characteristics 
are lower compared with non-interpolated LUT and linear interpolated LUT. As a conclusion, 
a significant improvement of adjacent channel interference and EVM distortion is observed 
with the usage of HMT-LUT while maintaining  similar computational complexity with linear 
interpolated LUT (Lin-LUT).

Figure 4. Error Vector Magnitude (EVM) before and after predistortion with different DPD LUT’s
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Figure 5.  Error Vector Magnitude (EVM) before and after predistortion with different 

DPD LUT’s. 

 

Table 1 

Simulated EVM of WCDMA signal 

Simulated Output 

Spectrums 

8 entries 

EVM (dB) 

Non-Interpolated LUT -48.82 

Linear Interpolated LUT -52.64 

Hermite Interpolated 

LUT 
-58.57 

 

 

Table 1 
Simulated EVM of WCDMA signal

Simulated Output Spectrums 8 entries EVM (dB)
Non-Interpolated LUT -48.82
Linear Interpolated LUT -52.64
Hermite Interpolated LUT -58.57
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