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ABSTRACT

The grounding system of a lightning protection scheme is designed basically to avoid arcing and 
dangerous step potentials. The grounding impedance of the system varies depending on soil structure 
and frequency. This paper describes the effect of harmonic impedance (also called frequency dependence 
of soil) on potential distribution under lightning strike to a metal tower with single grounding path, for 
different soil types. The results show that the peak value of ground potential rise (GPR) and step voltage 
(SP) may reach extremely hazardous values even at distances in the order of 90 m from the tower footing, 
especially when  soil resistivity is high. Hence, we emphasise that, in contrast to power grounding, when 
designing of grounding systems that are meant to handle transient or high frequency currents as well, 
the frequency dependent soil parameters should be considered to avoid hazardous situations, especially 
at locations with a high probability of lightning strikes such as metal towers.  

Keywords: Lightning, frequency dependence of soil, grounding, transient impedance, GPR, SP

ARTICLE INFO 

Article history:
Received: 24 August 2016
Accepted: 03 Jun 2017

E-mail addresses: 
chandima.gomes@hotmail.com (Chandima Gomes)
riyadhzaki72@gmail.com (Riyadh Z. Sabry) 
*Corresponding Author

INTRODUCTION

Many empirical and experimental studies 
have shown that electrical behaviour of soil 
under transient conditions such as lightning, 

is quite different from the behaviour of the 
same at d.c. or low frequencies (Pedrosa et 
al., 2010). In power systems, measurements of 
grounding impedance are usually performed 
at low frequencies as the systems are 
designed to handle currents at nominal 
power frequency (50/60 Hz). Under power 
frequency conditions, grounding impedance 
is represented by only resistance of the 
electrode system and the masses of soil. 
At low frequencies, electrical conductivity 
and permittivity of soil could reasonably be 
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assumed to have constant or frequency independent values where the in situ is measured  by 
Wenner method (IEEE, 2012).

On the other hand, in order to conduct accurate analysis of the behaviour of grounding 
systems under high frequency or impulse conditions, there are several additional parameters 
needed to be considered such as system geometry and the frequency dependent variation of 
resistivity and permittivity of the soil. Hence, a grounding system designed without considering 
such variables may produce dangerous potential gradients and large potential rises even at 
quite long distances which may be hazardous to both living beings (humans and livestock) 
and conducting systems (electronics, oil & gas pipelines etc.).  Therefore, high accuracy in the 
prediction of potential distribution for a given grounding system plays a vital role in designing 
an appropriate grounding scheme for a given environment.

Several equations have been developed to analyse the frequency dependence of soil. In 
this paper we consider six different models/expressions which have been proposed by (Cavka, 
Mora, & Rachidi, 2014) for the representation of soil electrical parameters, namely the model 
by Scott (S), Messier (M), Visacro and Portela (VP), Portela (P) , Visacro and Alipio (VA) and 
constant impedance (C). This study had investigated the dependence of soil parameters with 
the frequency and its effects on the response of the grounding system of a metallic tower when 
the structure or a conducting line connected to the structure (e.g. Power line or communication 
line) is struck by lightning. Negative lightning, most prevalent in tropical countries, has been 
considered for the analysis (both first and subsequent strokes). Heidler current model has been 
employed to calculate ground potential rise (GPR) and (SP) by using MATLAB code.

METHODOLOGY

Current waveforms of lightning

The lightning stroke waveform is described by the IEC-62305-1 standards (IEC62305, 2010) 
as shown in Equations 2-3 (Rameli, Abkadir, Izadi, Gomes, & Azis, 2014; V. A. Rakov and 
M. A. Uman, 2003).
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Parameters for the first stroke and the subsequent stroke Heidler waveforms are given in Table 
1. The first return stroke current is characterised by a peak value of 30 kA, zero-to-peak time of 
about 8μs and a maximum steepness of 12 kA/μs ,whereas the subsequent return stroke current 
has a peak value of 12 kA, zero to-peak time of about 0.8  and a maximum steepness of 40 
kA/ s (Rachidi & Janischewskyj, 2001). Figure-1 shows the first and subsequent waveforms 
simulated with the above parameters.

Table 1 
Parameters (Rachidi & Janischewskyj, 2001)

 іo1(kA)  τ11(µs) τ21(µs) η1 іo2(kA) τ12(µs) τ22(µs) η2

First stroke 28 1.8 95 2
Subsequent stroke 10.7 0.25 2.5 2 6.5 2 230 2

Figure 1. First and Subsequent return stroke current wave shapes
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B. Tower grounding system  

Figure 2 shows the model of the tower grounding system. The buried grounding 

electrode, made of steel with the radius of 6 mm, resistivity of 1.66 × 10-7 Ωm, 

relatively magnetic permeability of 636 and a depth of 3m have been considered (Lu, 

Liu, Qi, & Yuan, 2012). We considered three values of soil conductivity (  =0.01, 
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Tower grounding system

Figure 2 shows the model of the tower grounding system. The buried grounding electrode, 
made of steel with the radius of 6 mm, resistivity of 1.66 × 10-7 Ωm, relatively magnetic 
permeability of 636 and a depth of 3m have been considered (Lu, Liu, Qi, & Yuan, 2012). 
We considered three values of soil conductivity (σ =0.01, σ =0.001 and σ =0.0001 S/m) that 
represent most of the soil types that are found in Malaysia. The computations have been 
repeated for several distances.

Grounding system analysis

Practically-equivalent approaches to excitation-independent ground impedance have been 
widely used for computation of ground protection distribution. The first is the time-domain 
ground surge impedance Z(t), which is the ratio of the voltage response to a unit step current 
excitation. The second is the frequency-domain alternative to the surge impedance: ground 
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harmonic impedance Z(ω) (Cooray, 2010). The harmonic impedance in the frequency domain 
is defined as:
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Where σ is electric conductivity, ω is angular frequency and ε is the electric permittivity. 
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Step potential (SP) at the distance for a 0.5 m gap was calculated by the following equation:

      

(ω) enables evaluation of the time functions of the transient potential v (t) as a 

response to an arbitrary current pulse i (t) by: 

 

 

In equation (6) and denote Fourier and inverse Fourier transforms 

respectively (Pedrosa et al., 2010). The admittance is given by  

 

 

 

Where  is electric conductivity, ω is angular frequency and is the 

electric permittivity. To calculate  we used six empirical equations (Alipio & 

Visacro, 2013; Messier, 1985; C. Portela, Eng, & Grillo, 1999; S. V. and C. Portela, 

1987; Scott, 1966). To determine the value of  we used Liew-Darveize 

equation (Liew & Darveniza, 1974) model: 

 

x  

 

Step potential (SP) at the distance for a 0.5 m gap was calculated by the following 

equation: 

SP  

Where =10m, 50m, 90m. 

III. Result and Discussion 

			   (9)

Where x =10m, 50m, 90m.

RESULT AND DISCUSSION

Figure 3 shows the variation of voltage distribution for the first and subsequent strokes at several 
distances for σ =0.01 S/m. At this rather low soil resistivity value 100 Ωm, at 10 m distance 
from the grounding electrode, for first stroke the peak voltage is 3.6 kV and for subsequent 
stroke is 1.5kV at 10 m.
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Table 2-3 shows the correlation between the distance and peak voltage GPR for the different 
empirical equations and different soil conductivity. As it is depicted in these tables, as the 
soil resistivity increases the peak potential increases rapidly and at 10 m for σ =0.0001 S/m 
(resistivity of 10,000 Ωm) the value may exceed 100 kV. Such values, may heavily damage 
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equipment in a TT wiring system that have been grounded near the tower and connected with 
power neutral that has been grounded at a distant point (at the substation). Even at 50 m, the 
potentials may be harmful to most of the equipment that have impulse withstanding voltage of 
few kilo Volts. Hence equipotential sizing power and communication systems in the vicinity of 
towers with properly coordinated system of SPDs is essential for the safety of such equipment. 
In addition, such potential rises may also drive considerable transient currents in the skin of 
underground oil and gas pipelines in the vicinity enhancing metal corrosion. Therefore, isolation 
of pipelines that run close to the transmission and communication towers with suitable high 
resistive material is a need for their corrosion avoidance. Further studies should be done in this 
regard to find the most appropriate solution for a given pipeline arrangement, soil resistivity 
and electrode system. It should also be noted that the potential rise in the case of subsequent 
strokes is also significant. As a majority of negative flashes in most parts of the world may 
reach multiplicities above 5, the equipment in the nearby systems and metal pipelines may be 

Table 2 
Peak voltage GPR first stroke for six empirical equations 

Conductivity
Models

Distance 
(m)

S
(V)

M
(V)

VP
(V)

P
(V)

VA
(V)

Constant
(V)

α =0.01 S/m 10 m 2518 3416 3071 3162 2816 3603
50 m 758.3 1028.5 924.5 952 848 1085
90 m 115.2 156.3 140.5 144.7 128.88 164.87

α =0.001 S/m 10 m 15566 30930 30710 27535 16440 36000
50 m 4686 9310 9245 8288 4949 10850
90 m 712 1415 1405 1260 750 1650

α =0.0001 S/m 10 m 83000 243780 307110 215850 57400 360000
50 m 25000 73400 92450 65000 17280 108400
90 m 3800 11155 14050 9875 2626 16500

Table 3 
Peak voltage GPR subsequent stroke for six empirical equations 

Models
Conductivity Distance 

(m)
S
(V)

M
(V)

VP
(V)

P
(V)

VA
(V)

Constant
(V)

α =0.01 S/m 10 m 1034.5 1393 1265.8 1310 1191.5 1451.2
50 m 311.4 419.3 381 394.5 358.7 436.8
90 m 47.3 63.75 57.9 60 54.5 66.4

α =0.001 S/m 10 m 6477.5 12857 12685 11386 7366.7 14512
50 m 1950 3870 3810 3425 2218 4368.5
90 m 297 589 579.5 520 337 664

α =0.0001 S/m 10 m 35000 104000 126600 92000 29500 145000
50 m 10500 31300 38100 27700 8885 43685
90 m 1600 4760 5792 4210 1350 6640
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subject to repeated high potential rises during a single flash. The protective systems should be 
developed by considering this factor as well.

Figure 4 shows the relation between the distance and step voltage for 0.5 m in the cases of 
first and subsequent strokes for different empirical equations at soil conductivity of 0.001 S/m  
(resistivity of 1000 Ωm). The step voltage for constant impedance is higher than that calculated 
by other models. At 10 m, for first stroke, the value of step voltage for different model vary 
between 3.8 kV to 1.0 kV and for subsequent stroke the same parameter ranges between 1.5 
kV and 0.7 kV. At 50 m and 90 m the step potentials are 0.8 kV-0.15 kV and 0.3 kV-0.15 kV 
for first stroke. For subsequent strokes, the values are 0.4 kV-0.7 kV and 0.17 kV-0.03 kV. 
The results show that at a moderate soil resistivity, dangerous step potentials may be reached 
at close vicinity to the grounding system which may knock-off workers or visitors that walk/
stand around. The SP may take much higher figures as the soil resistivity is increased to large 
values. These factors should be taken into account by the grounding system designers to ensure  
safety of the people at a tower site.

Figure 4. SP for first and subsequent stroke at different distance
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Conclusion  

This experiment has shown that lightning strikes to a metal tower or service line 

connected to that may drive impulse current into the soil may cause dangerous GPR 

and SP in the vicinity. The peak values and time variation of the GPR and SP depend 

on soil resistivity and the type of lightning current. They should also be a function of 

the grounding system arrangement as well but in this study, we have considered only 

a single grounding electrode connected to one footing of the tower. The engineering 

designers should take these parameters into account in developing the grounding 

system for a tower to ensure the safety of workers and visitors and the protection of 

equipment connected to the nearby grounded power and communication systems. The 

corrosion enhancement of nearby oil and gas pipelines is also a concern with respect 

to GPR. Further studies should be conducted in this regard with respect to various 

electrode arrangements, non-uniform soil resistivity profiles and positive lightning as 

CONCLUSION 

This experiment has shown that lightning strikes to a metal tower or service line connected to 
that may drive impulse current into the soil may cause dangerous GPR and SP in the vicinity. 
The peak values and time variation of the GPR and SP depend on soil resistivity and the type 
of lightning current. They should also be a function of the grounding system arrangement as 
well but in this study, we have considered only a single grounding electrode connected to one 
footing of the tower. The engineering designers should take these parameters into account in 
developing the grounding system for a tower to ensure the safety of workers and visitors and the 
protection of equipment connected to the nearby grounded power and communication systems. 
The corrosion enhancement of nearby oil and gas pipelines is also a concern with respect to 
GPR. Further studies should be conducted in this regard with respect to various electrode 
arrangements, non-uniform soil resistivity profiles and positive lightning as well, to understand 
the frequency dependent electrical behaviour of soil in the vicinity of the grounding system.
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