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ABSTRACT

In this paper, the challenge of harmonic injection mitigation becomes critical with the massive use of 
inverters in electrical distribution systems that has been discussed and analyzed. Currently, between the 
inverter and the grid, L, LC or LCL filters is often used to mitigate the current harmonic. Further, filter 
connection in both delta-to-star or star-to-delta  transformer for state  space model of LC filter couplings 
with impedance is obtained in this paper and it also talked about the different passive damping techniques 
that been used to suppress the resonance effect on the filter. The effect of series and parallel damping 
resistor techniques that impact filtering and stability are also been analyzed and discussed. At the end, 
the simulation results show that LCL filter with parallel damping resistor achieves best performance 
compared on those for L, LC, or LCL with series damping resistor while at the same time enhancing 
the smoothness of the signal output while at the same time reducing the percentage of total harmonic 
distortion between inverter-grid connection.
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INTRODUCTION

The voltage source converters (VSCs) have 
become an essential part of many prime 

movers and appliances when connecting to 
the grid (Liu et al, 2009). Traditionally VSCs 
are connected with an inductor L, in order 
to reduce the switching frequency ripple 
current, although many topologies can be 
found in the literature incorporating only 
L-type filter (Akagi. 1996; Bolsens et al., 
2006; Teodorescu et al, 2004). However, it is 
well-known that such an output filter may not 
be sufficient to meet power quality standards 
given in IEEE 519 or IEC 61000-3-2 (Twining 
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et al., 2003), because of the existing high-current ripple due to the Pulse Width Modulation 
(PWM) of the inverter. To further reduce the effect of thus PWM harmonics, more complex 
output filter can be used, such as an inductance capacitance (LC) or inductance capacitance 
inductance (LCL) topologies suggested in (Shen et al., 2008; Shanxu et al., 2010; Wang et 
al., 2003). Although, LCL filter may reduce costs and improve dynamic response, but a small 
inductor value is necessary to achieve the required performance in reducing the switching 
harmonics in comparison with L or LC filter. Particularly, in large power system where the 
frequency is low, whereby the advantages of LCL filter are more evident.

As known, LCL filter needs smaller inductance value compared to L-type filter for the same 
performance in harmonic suppression, where it is used in high-power and low-frequency current 
source controlled in grid- connected converters (Wu et al., 2013 a; Pena-Alzola et al., 2013a). 
However, LCL filter parameters design is not only related to the switching frequency or ripple 
attenuation but also related to the performance of the grid-current control loop (Kroutikova et 
al., 2007). In (Liserre et al., 2005; Julean et al., 2009) a detailed design procedure of an LCL 
filter was presented. According to the requirements of current ripple tolerance, voltage drop, 
resonance frequency, reactive power rate, and losses are needed to be considered before the 
LCL filter parameters can be designed.

In (Renzhong et al., 2013) the L , LC, and LCL filters have been compared and showed that 
the LCL filter give an excellent harmonic suppression capability, while at the mean time the 
LCL filter generates a significant resonance peaks that effect the system stability. Therefore, a 
damping technique must be introduced in order to improve the peak of the system. There are  
many passive and active methods are been proposed in order to satisfy the system stability 
requirements. In order to suppress LCL filters resonance, passive methods (Wu et al., 2013) are 
easier and cheaper to implement. The basic types of passive damping methods are described in 
(Wu et al., 2013c; Julean, 2009b) where Passive elements like resistor, inductor and capacitor 
are placed by using different combinations. However, it is really ambitious to trade-off losses 
and filter performance.

This paper presents a state-space model of LC filter coupling with impedances in star and 
delta connected capacitors will be discussed in Section 2. Then the effective passive damping 
methods will be presented in Section 3. At the end, the simulation result will prove that the 
LCL filter achieves the best performance, indicated the impacts on the stability and filtering 
property from the parallel resistor or series resistor will discuss in Section 4. Finally, this paper 
will be concluded in Section 5.

STATE-SPACE MODELS  OF  LC  FILTER  AND  COUPLING IMPEDANCE 
IN  STAR  AND  DELTA CONNECTED CAPACITORS

The LC filter and coupling impedance with Y and ∆ connected capacitors are illustrated in 
Figure 1(a, b), where Li  is the inverter-side inductor Lc is the coupling grid-side inductor, Cf 
is a capacitor with a series Rf  damping resistor, Ri and Rc  are inductors resistances, Vin is an 
inverter output and Veg as system output or grid side voltage. Other then that, Iia , Iib , Iic, Via, 
Vib , Vic are per phase voltage and current of inverter side  inductance whereas, Iga, Igb, Igc, Vga, 
Vgb, Vgc are per phase system output side voltage and current.
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The selection of the inductor and capacitor involve some design consideration due to 
the dynamic effect that needs to be consider for low-frequency harmonics and the effect of 
the inductance if a transformer is been used to connect the inverter with the grid as shown in 
Figure 1 .How to design the output filter circuit is out of the scope of this paper but the reader 
can find the detailed of this filter in (Julean, 2009c).

Figure 1(a, b). LC Filter and Coupling Impedance star and delta connected capacitors 

The equations describing the phase a, b and c of the filter in star and delta connected is 
tabulated in Table 1. 

Table 1 
Star and delta connected parameters equations
Star connected capacitor equations Delta connected equations

In delta connected equations, 
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igϕaḃ
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 where ϕ  = phases 
A, B and C, with the general state space equation is given as follows:
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dvcϕ

dt =  1
Cfϕ

iiϕ − 1
Cfϕ

igϕ 𝑣𝑣𝑐𝑐𝑐𝑐 + 𝑣𝑣𝑐𝑐𝑐𝑐 + 𝑣𝑣𝑐𝑐𝑐𝑐 = 0 ,
𝑑𝑑𝑣𝑣𝑐𝑐𝑐𝑐  
𝑑𝑑𝑑𝑑

= 1
3𝐶𝐶𝑓𝑓

𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 − 1
3𝐶𝐶𝑓𝑓

𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐         
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 =  1

𝐿𝐿𝑖𝑖𝑖𝑖
𝑣𝑣𝑖𝑖𝑐𝑐 − 𝑅𝑅1𝑖𝑖+𝑅𝑅𝑓𝑓𝑖𝑖

𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑐𝑐 − 𝑉𝑉𝑐𝑐𝑖𝑖

𝐿𝐿𝑖𝑖𝑖𝑖
+ 𝑅𝑅𝑓𝑓𝑖𝑖

𝐿𝐿𝑖𝑖𝑖𝑖
𝑖𝑖𝑔𝑔𝑐𝑐       𝑑𝑑𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐

𝑑𝑑𝑑𝑑 =  1
3𝐶𝐶𝑓𝑓𝑖𝑖

𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 − 1
3𝐶𝐶𝑓𝑓𝑖𝑖

𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐      

𝑑𝑑𝑖𝑖𝑔𝑔𝑐𝑐
𝑑𝑑𝑑𝑑 =  1

𝐿𝐿𝑐𝑐𝑖𝑖
𝑣𝑣𝑐𝑐𝑐𝑐 +

𝑅𝑅𝑓𝑓𝑐𝑐
𝐿𝐿𝑐𝑐𝑐𝑐

𝑖𝑖𝑖𝑖𝑐𝑐 −
𝑅𝑅𝑐𝑐𝑐𝑐 + 𝑅𝑅𝑓𝑓𝑐𝑐

𝐿𝐿𝑐𝑐𝑖𝑖
𝑖𝑖𝑔𝑔𝑐𝑐 −

𝑉𝑉𝑔𝑔𝑐𝑐
𝐿𝐿𝑐𝑐𝑐𝑐

      

 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 =  1

𝐿𝐿1𝑖𝑖
𝑣𝑣𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅1𝑖𝑖+𝑅𝑅𝑓𝑓𝑖𝑖

𝐿𝐿1𝑖𝑖
𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑉𝑉𝑐𝑐𝑖𝑖

𝐿𝐿1𝑖𝑖
+ 𝑅𝑅𝑓𝑓𝑓𝑓

𝐿𝐿1𝑖𝑖
𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐     

here , 𝜙𝜙 = 𝑎𝑎 , 𝑏𝑏, 𝑐𝑐 (three phase system) 𝑑𝑑𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 =  1

𝐿𝐿𝑐𝑐𝑖𝑖
𝑣𝑣𝑖𝑖𝑐𝑐𝑐𝑐 + 𝑅𝑅𝑓𝑓𝑖𝑖

𝐿𝐿𝑐𝑐𝑖𝑖
𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑅𝑅𝑐𝑐𝑖𝑖+𝑅𝑅𝑓𝑓𝑖𝑖

𝐿𝐿𝑐𝑐𝑖𝑖
𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 −

𝑉𝑉𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖
𝐿𝐿𝑐𝑐𝑖𝑖

    
 
In delta connected equations,  𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 − 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐  ,  𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐 − 𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐  where 𝜙𝜙 = phases A, B and C, with the  
general state space equation is given as follows:      
�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵                                                     (1) 
Whereas the state space representation of the equations for star and delta connected system are given in equation (2) 
and (3)  respectively: 
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Whereas the state space representation of the equations for star and delta connected system 
are given in equation (2) and (3) respectively: 

    

  
  

Figure 1(a, b).  LC Filter and Coupling Impedance star and delta connected capacitors 
 
The equations describing phase a, b and c of the filter in star and delta connected is tabulated in Table 1. 
 
Table 1 
Star and delta connected parameters equations       
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𝐿𝐿1𝑖𝑖
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here , 𝜙𝜙 = 𝑎𝑎 , 𝑏𝑏, 𝑐𝑐 (three phase system) 𝑑𝑑𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖
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In delta connected equations,  𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐 − 𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐  ,  𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐 − 𝑖𝑖𝑔𝑔𝑐𝑐𝑐𝑐  where 𝜙𝜙 = phases A, B and C, with the  
general state space equation is given as follows:      
�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵                                                     (1) 
Whereas the state space representation of the equations for star and delta connected system are given in equation (2) 
and (3)  respectively: 

[
vcϕ̇
iiϕ̇
iġϕ̇
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Figure 1(a, b).  LC Filter and Coupling Impedance star and delta connected capacitors 
 
The equations describing phase a, b and c of the filter in star and delta connected is tabulated in Table 1. 
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PASSIVE DAMPING METHODS

In LCL filter, the resonance effect can produce instabilities at the inverter output especially if 
some harmonic voltage/current is closed to resonant frequency (Pena-Alzola et al., 2013 b). 
To attenuate the possible resonances caused by the high-order power filter, whether at LC or 
at LCL filter, it is where an additional element which is a passive damping or active damping 
schemes should be adopted (Wu et al., 2013 d). In view of the suppleness and the cost, it 
mainly deals with LCL filter hardware circuit itself, so that sometimes the passive damping 
method is more attractive than the active damping. Notice that, bandwidth is always limited 
so that for certain frequencies active damping may not be able to actuate. Nevertheless, it is a 
challenge to balance the power losses or to have the satisfactory damping effect and to have 
the harmonic attenuation when selecting the damping parameters for a high order power filter 
(Wu et al., 2013 e). Passive damping is achieved by adding a resistance in series or in parallel 
with the capacitance as presented in next subsections.

Rd-series and parallel Damped LCL filter

The aim of using damping is to reduce the Q-factor at the characteristic resonance frequency. 
It is often easy to achieve by inserting a resistor in parallel or series with the capacitor as 
illustrated in Figure 2(a) and (b) respectively.
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Figure 2. (a) damping Rd in parallel with 𝐶𝐶𝑓𝑓    ; (b) damping Rd in series with  𝐶𝐶𝑓𝑓    
 
The Rd-damped LCL filter is inserting to avoid the resonance phenomenon. The equation for resonant frequency is  
given in equation (4). 

𝑓𝑓𝑟𝑟 =  1
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Where 𝑓𝑓𝑟𝑟 is resonant frequency, Li is the inverter-side inductor, 𝐿𝐿𝑐𝑐 is the coupling grid-side inductor, 𝐶𝐶𝑓𝑓 is a capacitor. 
It can be seen that, the Rd   parameters is not consider in the Equation 4, where it does not affect the resonance of fr 
(Wu et al, 2013 f). 

The LCL filter transfer functions of line side current and inverter input voltage in a grid-connected mode of 
operation with series and parallel damping resistance are given in Equations 5 and 6 respectively. From the transfer 
functions, by analyzing those equations, larger series resistance values can give better damping or lower Q-factor, as 
can be seen from the transfer functions after damping are; 
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Where the Q factor is proportional to𝑅𝑅𝑑𝑑. If the selection of Rd is too big, the attenuation will be reduced that caused a 
harmonics problem to the LCL filter. Moreover, a higher 𝑅𝑅𝑑𝑑 value can increase the losses at low frequency. In this 
case, as a hypothesis, this method cannot be used for higher power rating in the level of hundreds of kW or MW.   
Now, for good filtering purposes, both parallel and series damping are suitable to be applied, but the question is to 
find out which one is better.  The parallel and series resistor are described in Equation (7).  
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Figure 2. (a) damping Rd in parallel with Cf; (b) damping Rd in series with Cf
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The Rd-damped LCL filter is been inserted to avoid the resonance phenomenon. The 
equation for resonant frequency is given in equation (4)
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where the Q factor is proportional to Rd . If the selection of Rd is too big, the attenuation will be 
reduced which caused a harmonics problem to the LCL filter. However a higher Rd value can 
increase the losses at low frequency. In this case, as a hypothesis, this method cannot be used 
for higher power rating in the level of hundreds of kW or MW. For good filtering purposes, 
both parallel and series damping are suitable to be applied, but the question is to find out which 
one is better. The parallel and series resistor are described in Equation (7). 
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Due to the fact that value of the series resistor is larger than the parallel resistor when the resistor is a series 
connection, the high-frequency harmonic current flow through capacitance is bigger than in the parallel one. 
Therefore, the filter has a better effect of suppressing the high-frequency components. The spectrum characteristics 
are shown in figure. 3(a, b) and the above approach was further proved and verified within simulation environment 
using MATLAB software. 
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SIMULATION RESULTS 
 
Matlab/Simulink power system toolbox software was used to simulate the proposed approach. In this paper, the 
designed LCL filter of the grid-connected inverter was simulated. Calculated parameters can be shown in Table 2.  
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L1 
L2 
Cf 
Rd 

240/415 V 
50 Hz 
1 kW 
3 kHz 
530 uH 
143 uH 
118 uF 
0.3 ohm 

 

In this paper, the simulation for LCL filter with series and parallel damping resistance are compared with the 
effect of both damping techniques. The presented simulation results are obtained for the harmonic current, voltage 
waveform with and without damping techniques, as illustrated in following figures.  
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Due to the fact that the value of the series resistor is larger than the parallel resistor, the 
current that flows in series contain high-frequency harmonic current flow through capacitance 
compared in the parallel one. Therefore, the filter has a better effect of suppressing the high-
frequency components. The spectrum characteristics are shown in Figure 3 (a, b) and the above 
approach was further proved and verified in simulation environment using MATLAB software.
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Matlab/Simulink power system toolbox software was used to simulate the proposed approach. 
The designed LCL filter of the grid-connected inverter was simulated. and the calculated  
parameters is shown in Table 2.

In this paper, the simulation for LCL filter with series and parallel damping resistance are 
compared with the effect of both damping techniques. The presented simulation results are 
obtained for the harmonic current, voltage waveform for with and without damping techniques, 
as illustrated in following figures. 
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Figure 4 (a) shows the THD is about 1.05% when series damping resistance is connected 
with LCL filter whereas in Figure 4. (b) is illustrated that THD of 0.57% is observed when 
damping resistance is connected in parallel with LCL filter. It is proved that, the parallel 
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 with and without series Rd; (b) series and parallel damping 

Table 2 
System parameters

Parameters Value
V (Voltage) 240/415 V
f (Frequency) 50 Hz
P (Rated power) 1 kW
FS (Switching frequency) 3 kHz
L1 530 uH
L2 143 uH
Cf 118 uF
Rd 0.3 ohm 

Figure 4. (a ,b): Harmonic waveform of LCL filter by (a) series damping (b) parallel damping resistance
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Figure 5. Current waveform (a) LCL filtering (b) with Rd+LCL filtering

The current output waveform without damping resistance gives high THD due to non 
quality signal that is effected on the inductor-capacitor respond which is illustrated in Figure 
5(a). However, current waveform after filtering by LCL filter with the combination of the Rd has 
improve the quality of the signal as shown in Figure 5(b). This quality signal is necessary for 
the DSP process whereby it can affect the bit signal generated on the analog digital converter 
sensor in order to have a efficient power transfer between the inverter to the grid that will be 
discussed in next paper.

CONCLUSION

As a conclusion, this paper has investigated series and parallel resistive passive damping 
techniques in LCL filter for inverter-grid connection for star-delta and delta-star connection. 
The different damping methods are evaluated by showing the improve THD percentage with 
small bandgap of the bode plots between with or without damping resistor. As shows, the 
parallel resistance gives significant improvement to the quality of the signal. All features 
indicated that a better design can be obtained by using parallel connected damping techniques 
in LCL filter rather than series connection, especially for small and medium voltage source 
inverters connected to the grid.
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