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ABSTRACT

One of the concerns in power system preventive control and security assessment is to find the point 
where the voltage and frequency collapse and when the system forces a severe disturbance. Identifying 
the weakest bus in a power system is an essential aspect of planning, optimising and post-event analysing 
procedures. This paper proposes an approach to identify the weakest bus from the frequency security 
viewpoint. The transient frequency deviation index for the individual buses is used as the weakest bus 
identification as well as a frequency security indicator. This approach will help to determine the bus 
with the worst deviation, which helps to analyse the system disturbance, takes proper control action to 
prevent frequency failure, and most importantly, observes consumer frequency. The approach is applied 
to the WSCC 9 bus test system to show the feasibility of the method.  
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INTRODUCTION

In recent years, the integration of various 
renewable resources has made power system 
control and protection complicated. When 
there is any change in the operation condition 
due to increased load demand, it results in 

generator outage or in a natural fluctuation of 
the generating sources.  Consequently, system 
voltage and frequency will experience a state 
of instability. The detection of the weakest 
point of the system where the voltage or 
frequency collapses is a vital aspect in studies 
related to power system security assessment. 

The  a re  s eve ra l  s tud ie s  on  the 
identification of the weakest bus based on 
voltage security. Kuhn-Tucker’s theorem 
has a voltage stability indicator which helps 
to identify the weakest voltage bus or area. 
This indicator is comprehensive because it 
covers all marginal costs (Gau, 1994). Chen 
(1996),describes a method to identify the 
weak bus using voltage collapse proximity 
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indicator to install the VAR source and enhance the system security margin. A study of the 
power system’s weak bus identification using model analysis, multivariable control, and SVD 
(Singular Value Decomposition) was conducted by (M. K. Jalboub, H. S. Rajamani, 1998). 
An easy method to locate the critical voltage bus using a basic power flow equation and KVL 
law was carried out by (Bhonsle, Deshpande & Renge, 2004).

The above studies are  focused on voltage stability indices, effects of voltage stability 
control on system failure and blackouts. Despite the importance of understanding frequency 
behaviour for different bus systems as a result of integration of renewable energy resources, 
there are only a few studies that deal with identifying the weakest frequency bus. Such studies 
are essential for post-event analysis and for minimising the individual machine deviation when 
the system load is suddenly increased, or when outage occurs in the online units (Adibi & 
Fink, 2006).

The frequency deviation differs from one bus to another.  Consequently, the frequency 
deviation has been used in several studies either to locate each electrical area established on 
both coherent generators and  related non-generator buses (Khalil, Member, & Iravani, 2016) 
or for islanding control (Bevrani & Tikdari, n.d.).

This paper recommends the use of transient frequency deviation index (TFDI) for individual 
system buses. The TFDI is a good indicator for frequency stability to identify the worst 
deviation bus in the system. This approach will contribute effectively to the analysis of system 
disturbances, system partitioning into control areas, as well as observe consumer frequency.
The rest of this paper is structured as follows: the concept of frequency stability is  discussed 
in Section 2 while Section 3 presents the methodology. Section 4 discusses the simulation 
results while Section 5 provides the conclusions.

CONCEPT OF POWER SYSTEM FREQUENCY STABILITY

Frequency stability is the ability of a power system to withstand any credible disturbances 
and maintain a nominal operation frequency. Frequency stability depends on the ability of 
a power system to restore the balance of system generation with a minimum loss of load 
(Sun, H. D., Tang, Y., & M. A., n.d.). Frequency stability problems are related to insufficient 
reverse generation, inadequate protection and control devices, and the weakness in equipment 
responses.

Frequency stability may be short-term such as the rapid frequency deviation of the un-
generated island when it is insufficient under frequency load shedding such that the island 
is experiencing a blackout within seconds (Kundur et al., 2004), or it may be a long-term 
stability with the time frame ranging from tenths of a second to few minutes. This phenomenon 
can be caused by controls of over speed steam turbine or boiler protection (Hatziargyriou & 
Karapidakis, 1998; Chow, Kundur, & Acchione, n.d.). Frequency deviations can damage the 
equipment, degrade  load performance, overload transmission lines, and interfere with system 
protection schemes. Moreover, the significant frequency deviation events can ultimately lead 
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to system collapse. Therefore, frequency stability assessment is essential for power system 
operation and control.

TRANSIENT FREQUENCY DEVIATION INDEX OF SYSTEM BUSES

In a power system, if any generation or part of a generation unit trips, the frequency will 
deviate from the nominal value. Likewise, if any load disconnects from the system, the latter 
will experience a high-frequency deviation. In other words, the frequency deviation can reflect 
system generation balance. 

The frequency deviation is a good indicator of system stability. Most of the frequency 
security assessment studies used  frequency deviation indices such as maximum frequency 
deviation index MDFI, total frequency deviation index FDI, and frequency security index FSI 
(Manuel, Alvarez, Mercado, & Member, 2007). However, although these indices can measure 
the rigorousness of disturbances in a particular time, they are incapable of measuring the 
effect of frequency deviation in a period. Additionally, they are unable to indicate the different 
frequency decay for various buses (consumer) (Dai, Xu, Dong, Wong, & Zhuang, 2012).

Therefore, TFDI was established by Zhang, Li and Liu (2015). The TFDI can be obtained 
from frequency response trajectory and two elements tables (fcr ,tcr). The general formula for 
the index is:
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2) If there is an intersection between the frequency response and the critical frequency 
line, and, the break time tb is less than tcr (figure 1b) , the TFDI will be:
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Figure 1. Sd determination (a) when tb=0, (b) when 0<tb<tcr, (c) when tb>tcr 
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especially when the system withstands large disturbances such as 3-phase fault at any system 
buses or lines. Therefore, TFDI can be used to find the weakest or unstable bus from the 
frequency security viewpoint. The bus with the smallest TFDI is the worst deviation bus. 

PROPOSED METHODOLOGY

The methodology to locate the TFDI for individual buses, and then to decide the wind turbine 
location is shown in Figure 3. 
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SIMULATION RESULTS AND DISCUSSION:

The test system to be used for this simulation is the IEEE 9-bus, 3-machine test system shown 
in Figure 4. System data are given in (Ahmadi & Ghasemi, 2012). After running a power flow 
in order to identify the base operation conditions of the system, full-time domain simulations 
are applied with different contingencies. The results show that the frequencies of various buses 
are not the same. Therefore, the TFDI of buses is also different. Figure 5 below shows the 
frequency response of system buses for a 3-phase fault at bus 2. It is obvious from this plot 
that the responses are not similar. Consequently, the TFDI of system buses will be different.

Figure 2. Flowchart of identifying weak bus frequency  
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Frequency response of system buses for 3-phase fault at bus 2 
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the lowest TFDI buses. Thus, these buses can be mentioned as the weakest buses 

frequency of the system. Since bus 5 is the lowest TFDI among all load buses it can be 

selected as wind power integration bus to assess perfectly the maximum wind power 

penetration level. These results seem to be consistent with other studies which chose bus 

5 as wind farm integration bus (Ahmadi & Ghasemi, 2012). 

 

Figure 5. TFDI with bus no. for 3-phase fault at bus 7 

Figure 4. Frequency response of system buses for 
3-phase fault at bus 2r 
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numbers for different cases. It can be seen clearly from the results that we get approximately 
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bus 5 is the lowest TFDI among all load buses it can be selected as wind power integration 
bus to assess perfectly the maximum wind power penetration level. These results seem to 
be consistent with other studies which chose bus 5 as wind farm integration bus (Ahmadi & 
Ghasemi, 2012).

Figure 5. TFDI with bus no. for 3-phase fault at bus 7  

11 
 

power flow in order to identify the base operation conditions of the system, full-time domain 

simulations are applied with different contingencies. The results show that the frequencies of 

various buses are not the same. Therefore, the TFDI of buses is also different. Figure 5 below 

shows the frequency response of system buses for a 3-phase fault at bus 2. It is obvious from 

this plot that the responses are not similar. Consequently, the TFDI of system buses will be 

different. 

11

22 33

44

11

5

1

5
6

2

6

77 8

3

8

99

22
33

1

2

3

G3

G2

G1  
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30

49.6

49.7

49.8

49.9

50

50.1

50.2

50.3

50.4

50.5

Time (sec)

F
re

q
u
e
n
c
y
 H

z

 

 

Bus1
Bus2
Bus3
Bus4
Bus5
Bus6
Bus7
Bus8
Bus9

 

                  Figure 3. IEEE 9-bus test system                              Figure 4. 

Frequency response of system buses for 3-phase fault at bus 2 

The TFDI of each bus is calculated. Figures 6, 7 and 8 show the TFDI of each bus with 

bus numbers for different cases. It can be seen clearly from the results that we get 

approximately the same pattern for all cases. It can be observed that bus 2, 5 and bus 7 are 

the lowest TFDI buses. Thus, these buses can be mentioned as the weakest buses 

frequency of the system. Since bus 5 is the lowest TFDI among all load buses it can be 

selected as wind power integration bus to assess perfectly the maximum wind power 

penetration level. These results seem to be consistent with other studies which chose bus 

5 as wind farm integration bus (Ahmadi & Ghasemi, 2012). 

 

Figure 5. TFDI with bus no. for 3-phase fault at bus 7 

Figure 6. TFDI with bus 3-phase fault on line 4    

12 
 

 

Figure 6. TFDI with bus 3-phase fault on line 4                                                  

 

 

Figure 7. TFDI with bus 3phase fault at bus 2 

6. Conclusion: 

For economic load shedding protection design, it is necessary to evaluate the frequency 

instability. The first step to evaluate this instability is to find the severity of frequency 

deviation. Another important aspect of power system frequency stability is to observe the 

frequency decay for different buses (consumers). There is a need to find the weak frequency 

points of the network to select the wind turbine integration bus to estimate the maximum 

allowable wind power level accurately according to the impact of this turbine on system 

frequency. 

The main aim of this study is to show the ability of TFDI to evaluate the frequency 

stability for different system buses. The study also suggests an approach to find the most 

suitable bus for locating the load shedding schemes and for observing the frequency of 

customers. The feasibility of the proposed approach has been achieved on IEEE 9- bus test 

system. 

Figure 7. TFDI with bus 3phase fault at bus 2 

12 
 

 

Figure 6. TFDI with bus 3-phase fault on line 4                                                  

 

 

Figure 7. TFDI with bus 3phase fault at bus 2 

6. Conclusion: 

For economic load shedding protection design, it is necessary to evaluate the frequency 

instability. The first step to evaluate this instability is to find the severity of frequency 

deviation. Another important aspect of power system frequency stability is to observe the 

frequency decay for different buses (consumers). There is a need to find the weak frequency 

points of the network to select the wind turbine integration bus to estimate the maximum 

allowable wind power level accurately according to the impact of this turbine on system 

frequency. 

The main aim of this study is to show the ability of TFDI to evaluate the frequency 

stability for different system buses. The study also suggests an approach to find the most 

suitable bus for locating the load shedding schemes and for observing the frequency of 

customers. The feasibility of the proposed approach has been achieved on IEEE 9- bus test 

system. 

CONCLUSION

For economic load shedding protection design, it is necessary to evaluate the frequency 
instability. The first step to evaluate this instability is to find the severity of frequency deviation. 
Another important aspect of power system frequency stability is to observe the frequency 
decay for different buses (consumers). There is a need to find the weak frequency points of the 
network to select the wind turbine integration bus to estimate the maximum allowable wind 
power level accurately according to the impact of this turbine on system frequency.

The main aim of this study is to show the ability of TFDI to evaluate the frequency stability 
for different system buses. The study also suggests an approach to find the most suitable bus 
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for locating the load shedding schemes and for observing the frequency of customers. The 
feasibility of the proposed approach has been achieved on IEEE 9- bus test system.

Determining the critical level of variable renewable resources penetration while considering 
the system’s frequency limits can be explored in future research.
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