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ABSTRACT

The Gleason grading system assists in evaluating the prognosis of men with prostate cancer. Cancers 
with a higher score are more aggressive and have a worse prognosis.  The pathologists observe the 
tissue components (e.g. lumen, nuclei) of the histopathological image to grade it. The differentiation 
between Grade 3 and Grade 4 is the most challenging, and receives the most consideration from scholars. 
However, since the grading is subjective and time-consuming, a reliable computer-aided prostate cancer 
diagnosing techniques are in high demand.  This study proposed an ensemble computer-added system 
(CAD) consisting of two single classifiers: a) a specialist, trained specifically for texture features of 
the lumen and the other for nuclei tissue component; b) a fusion method to aggregate the decision of 
the single classifiers. Experimental results show promising results that the proposed ensemble system 
(area under the ROC curve (Az) of 88.9% for Grade 3 versus Grad 4 classification task) impressively 
outperforms the single classifier of nuclei (Az=87.7) and lumen (Az=86.6).    

Keywords: Ensemble machine learning, Gleason grading system, Lumen, Nuclei, Prostate cancer 
histological image, Tissue components   

INTRODUCTION

A common and traditional method for 
prostate cancer diagnosis is via a microscopic 
analysis of prostate biopsy tissue samples. 
Histopathologists analyse the tissue biopsy 
samples under a microscope, then diagnose 
and grade the tissue based on the texture 
of the tissue components (e.g. lumen and 
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nuclei). The pathologists examine the tissue at a high magnification (e.g., 40x) and utilise the 
tissue components and their texture features to distinguish benign (normal) from malignant 
(i.e. cancerous) tissue, and identify the tumour malignancy using the Gleason grade scheme 
(Gleason, 1977). The Gleason grading scheme consists of five numerical grades starting from 
least aggressive (Grade 1) to most aggressive (Grade 5). Gleason grade 3 and 4 share many 
similarities in terms of their textures. Thus, to differentiate between grade 3 versus grade 4 
is a challenging task  (Mosquera-Lopez, Agaian, Velez-Hoyos, & Thompson, 2014; Nguyen, 
Sabata, & Jain, 2012).

Manual process of diagnosing prostate cancer and grading has a few drawbacks. For 
instance, the process is subjective and can lead to biased opinion due to experience and personal 
skills of the pathologists. It leads to inter- and intra-observer variabilities. Consequently, 
an accurate computer-added systems (CADs) for prostate cancer diagnosing and grading is 
desirable.

 In most CAD- based diagnosis for prostate cancer, the features are determined based on 
the tissue-structure, such as shape, size of the tissue components. Additionally, , the features 
are extracted from the texture of the image, extracted from the region of interest (ROI) such 
as in (Diamond et al., 2004).  However, the texture features of the spatial distribution of the 
tissue components has a semantic meaning to a pathologist and used in practice to guide the 
grading estimation (Khurd et al., 2011; Mosquera-Lopez et al., 2014). Thus, the aim of this 
paper is to utilise the nuclei and lumen tissue components by extracting the texture features 
from their spatial distribution within the tissue image to distinguish between Grade 3 versus 
Grade 4 in prostate cancer (Sparks & Madabhushi, 2013). In addition, Ensemble machine 
learning is built by fusing the posterior probabilities of the lumen and nuclei classifiers to 
enhance their performance. 

The remainder of this paper is organised as follows: Section 2 discusses major studies and 
findings on this topic while Section 3 examines the proposed ensemble framework. In section 
4, the results of the study are discussed while section 5 concludes the paper. The methods to 
grade prostate cancer can be categorised as texture-based and structure-based (Mosquera et al., 
2014). In the texture based approach, different types of texture features in the histopathology 
image are employed for tissue classification.  Diamond et al., (2004) employed co-occurrence 
texture features to classify the tissue image into either stroma or prostatic carcinoma. DiFranco, 
O’Hurley, Kay, Watson, and Cunningham (2011) used the co-occurrence texture features for 
each colour channel independently to discriminate the textural discrepancy between normal 
and malignant cells.

In the structure-based approaches, the features are extracted either from specific tissue 
components (e.g. nuclei) (Doyle, Feldman, Shih, Tomaszewski, & Madabhushi., 2012; Khurd 
et al., 2011) or the gland structure (Nguyen, Sabata, & Jain, 2012). In  (Nguyen, Sabata, & Jain, 
2012), Nguyen proposed a method to extract the gland structure features based on the size of 
lumen and nuclei. However, this method is not successful in differentiating between grades 3 
versus 4. In (Nguyen, Sarkar, & Jain, 2012) the authors performed k-means in the RGB space 
to extract four tissue components, then extract the structure and contextual features from nuclei 
and lumen. These showed 79% accuracy when evaluated for normal v. cancer classification on 
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48 images. However, the structure features of the glands fail to detect glands without lumen 
or glands with multiple lumina (Nguyen, Sarkar, & Jain, 2014). 

Most of the studies above used generic texture features to classify a tissue pattern as 
being or malignant. The texture features of the spatial tissue components were not effectively 
analysed. In addition to low-level image features, we believe the domain knowledge about 
texture features of the special distribution of individual tissue components especially nuclei 
and lumina objects should be used in the classifiers to improve the sensitivity and selectivity 
of the classification. Therefore, this paper classifies a tissue image as Grade 3 or Grade 4 by 
building two independent single classifiers models based on textural features of the spatial 
distribution of nuclei and lumina objects respectively. Later, an ensemble of learning system 
is built consisting of two single classifiers, where each classifier is trained specifically for one 
tissue component. Thus, the final grading (Grade 3 versus Grade 4) is done by a combination 
of method. One of the most popular combination methods is the product rule (Polikar, 2006), 
which utilise the diversity of classifiers. 

MATERIALS AND METHODS

The proposed ensemble lumen-nuclei prostate classification system has five main stages, namely 
(1) lumen-nuclei tissue component identification, (2) feature extraction, (3) feature selection, 
(4) training and testing data formulation, and finally, (5) classification of images into Grade 3 
or Grade 4 by using an ensemble classifier. Figure 1 presents the top-level architecture of the 
proposed system. The following subsections describe the details of each stage in the proposed 
system.

		Figure 1. The proposed ensemble lumen-nuclei machine learning system

Lumen-Nuclei Tissue Component Identification

Lumen and nuclei are the most important components of the histopathological image  (Nguyen, 
Sabata, & Jain, 2012). To find the lumina and nuclei objects from the image, K-mean clustering 
algorithm is applied, where the image pixels (each with RGB components) are partitioned into 
four clusters (thus, k=4). Each pixel in the image is assigned a label corresponding to one of 
the four tissue components (lumen, stroma, nuclei, and cytoplasm) (Nguyen, Sarkar, & Jain, 
2012). Then, the nuclei and lumen tissue components are extracted as shown in Figure 2.
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Feature Extraction 

Three types of features, namely Haralick (Haralick & Shapiro, 1992), Histogram of Oriented 
Gradient (HOG) (Dalal & Triggs, 2005) and run-length matrix (Galloway, 1975), have been 
extracted from nuclei and lumen images individually. A set of variant Haralick features was 
extracted from two colour models i.e. CIELa*b* and HSV. A set 21 Haralick features was 
separately computed from each colour channel. Each Haralick feature is extracted from co-
occurrence matrixes based on a particular scalar distance (d=1) and four orientations 0, 45, 
90, and 135. The following 21 co-occurrence texture feature are computed: entropy, energy, 
dissimilarity, contrast, inverse difference, correlation, homogeneity, autocorrelation, cluster 
shade, cluster prominence, maximum probability, sum of squares, sum average, sum variance, 
sum entropy, difference variance, difference entropy, information measures of correlation-, 
information measures of correlation -, maximal correlation coefficient, and inverse difference 
normalised (INN) (Haralick & Shapiro 1992). Thus, 105 Haralick texture features were 
extracted from each image.

The second type is the HOG features (Dalal & Triggs, 2005), which provide discriminative 
and robust edge-based information by using the distribution of gradient directions. The HOG 
texture features are used to exploit the sharp and well-defined edges present in nuclei and 
lumen images of prostate cancer. In computing HOG features, the nuclei and lumen image 
are converted into a gray level before the HOG features are extracted from the gray images 
based on three factors: (a) number of vertical portions of the image, (b) a number of horizontal 
portions of the image, (c) bin size.

The third type is the run-length matrix (RLMs) which measures the coarseness of texture in 
a specific direction (Galloway, 1975; Mosquera-Lopez et al., 2014). The RLMs are generated 
for each segmented image (nuclei or lumen) using different directions (0 ,45 ,90  and 135 ), 
then 11 statistical features are derived like in (Al-Kadi, 2010; Tang, 1998). The following 11 
RLMs statistical texture features are computed: Short Run Emphasis, Long Run Emphasis, 
Gray-Level Nonuniformity, Run Length Nonuniformity, Run Percentage, Low Gray-Level 
Run Emphasis, High Gray-Level Run Emphasis, Short Run Low Gray-Level Emphasis, Short 
Run High Gray-Level Emphasis, Long Run Low Gray-Level Emphasis, Long Run High Gray-

	 7	

Jain, 2012). Then, the nuclei and lumen tissue components are extracted as 

shown in Figure 2. 
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Level Emphasis (Tang, 1998). The generalised feature vectors for lumen and nuclei are given 
by Equation 1 and 2 respectively:

                   (1)

                  (2)

where Lf , Nf represent the respective features vectors  of lumen image, and nuclei image 
respectively, aht, bht, Hht, Sht, Vht are the Haralick features for the a*,b*,H, S, and V channels 
respectively, Hogl and Hogn represent the Hog features of lumen and nuclei images respectively, 
Rmll and Rmln represent the RML of lumen and nuclei images respectively. A total of 197 
features were extracted from separated nuclei or lumen images.   

Feature Selection. In prostate cancer classification problem, although each segmented 
image is represented by a set of texture features that tend to characterise the texture from a 
different perspective, high dimensionality of training dataset results in the problem of “curse 
of dimensionality” (Mosquera-Lopez et al., 2014; Saeys, Inza,  & Larrañaga, 2007). Thus, 
feature selection technique is performed to reduce the high dimensionality features space by 
selecting the most discriminative features. It is based on three main approaches: filter, wrapper 
and embedded. In general, embedded approach presents significant advantages on feature and 
classifier interaction (Saeys, Inza, & Larrañaga, 2007).

Among the embedded methods, support vector machine- recursive feature elimination 
(SVM-RFE) (Guyon, Weston, Barnhill, & Vapnik, 2002) are more robust to data over-fitting 
than other feature selection methods and has shown its efficacy in many fields. Therefore, 
this study proposes SVM-RFE for selecting the most important features from both nuclei and 
lumen features.

SVM Classifier. A Support Vector Machine (SVM) is a binary learning algorithm proposed 
by Vapnik (Cortes & Vapnik, 1995), which is used to analyse and recognise patterns. In this 
study, two SVM classifiers are employed to learn from the above-selected features to diagnosis 
the prostate histopathology image and discriminate between Grade 3 versus Grade 4. The first 
classifier learned using the training features of nuclei images, while the second learnt by using 
the selected training features of lumen images.

For SVM, Radial- Basis-Function (RBF) kernel was used in the experiment. Initially, the 
selected features in the training and testing sets were normalised to the interval [-1, +1] to find 
the SVM parameters C and γ that perform best for the selected features. In order to optimise 
the classification performance, the parameters were determined  using the libsvm (Chang & 
Lin, 2011) grid-search algorithm. We tried the following values {2-20, ..., 21…, 220} for C 
and γ respectively. The values which gave the best accuracy performance with threefold cross-
validation are picked and used to train on the training set.
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Ensemble Method for Combining Classifiers of Nuclei and Lumen. In machine learning, 
ensemble classifier is becoming increasingly important as they have repeatedly displayed the 
ability to improve the performance of a single classifier in theory and practice (Chawla & 
Sylvester, 2007). The ensemble classifier consists of a set of independent trained base classifiers 
whose predictions are fused to classify new samples. The outputs of all these base classifiers are 
fused to create an ensemble final output based on a fusion rule.  The fusion rules are categorised 
as (i) a fusion rule that applies to class label, and (ii) class-specific continuous outputs (Polikar, 
2006). For example, majority voting is classified as the first group (i). In comparing different 
fusing rules for ensemble learning, majority voting is as effective as other complicated rule. 
However, it is not as good as other techniques with the problem of binary classes (Chen, Zhao, 
& Lin, 2014). Thus, this study utilises the continuous output because it looks to solve the 
two-class classification problems. Among the continuous output fusion rules, the product rule 
is the most efficient and simple rule for combining the output of the base classifiers, which 
is fast and uses all the information available in the outputs of the base classifiers (Abdullah, 
Veltkamp, & Wiering, 2009). Moreover, the product rule is utilised when the base classifiers 
operate in independent feature spaces and have small  errors. Thus, in this study, the product 
rule is employed to fuse the output of the  lumen and nuclei base classifiers to produce the final 
decision of the ensemble.  In product rule (Eq. 3), the posterior probability outputs  for 
class j of t different classifiers (nuclei and lumen) are fused based on the following  formula:

                     (3)

Then, the class with the maximum probability product is considered as the final class label 
belonging to the test tissue image (l). 

RESULTS AND DISCUSSION

Dataset 

The dataset consists of a total 149 Haematoxylin and Eosin (H&E)-stained prostate images with 
4140 X 3096 pixels. There are 41 images of Grade 3 and 56 of Grade 4, and 52 are benign. The 
images digitised at 40x optical magnification. Each region of interest was previously extracted 
from homogeneous patches of whole tissue slides, and experienced pathologists graded it. The 
average classification performance over 50 different runs for the best parameters are reported, 
in each run, the dataset is randomly divided into 50% for training and 50% for testing.

Performance Measures 

The proposed Ensemble learning system was quantitatively evaluated using widely known 
performance criteria such as averaged area under ROC curves (Az), accuracy, specificity 
and sensitivity. The Az and accuracy were used to measure the ensemble performance using 
the product rule (Eq. 3). Specificity measures how well the ensemble can make a grade 3 
identification. Sensitivity measures how reliable the ensemble system is diagnosing Grade 4. 
All of these criteria are multiplied by 100%.
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The performance and significance level of using single nuclei, lumen classifiers and their 
ensemble for prostate cancer grading (Grade 3 vs. Grade 4) are shown in Table1. The results 
in Tables 1, 2 and 3 show the impact of the texture features of nuclei and lumen objects in 
diagnosing and grading the prostate cancer accurately. The hybrid of HOG, RML and Haralick 
texture were developed by simple concatenation of individual feature set. The hybrid features 
set have been reduced using SVM-RFE as discussed in section 3.3. 

Prostate tissue images have been classified into Grade 3 and Grade 4 classes based on 
reduced hybrid feature sets. As shown in Table 1, the results demonstrate that the single 
nuclei classifier achieves up to Az= 87.75±4.8 while Az=86.62±4.2 for the lumen classifier. 
However, the sensitivity of the lumen classifier (90.5%) was better than the nuclei classifier 
(89.78). This indicates that the lumen tissue component in the histopathology images is an 
asset in identifying Grade 4.

In addition, there was a significant difference between nuclei, lumen and their ensemble 
(p-value=0.0088) in Grade 3 versus Grade 4 (Table 1). The Az value of ensemble was higher 
than the base classifiers (either nuclei or lumen). Hence, the proposed ensemble is significantly 
helpful to improve the grading performance. Moreover, it can be seen from Table 1 that the 
proposed ensemble of nuclei and lumen outperforms the single nuclei and lumen in term of 
Az, accuracy, sensitivity and specificity. The value of Az significantly increased with about 
2.3% and 1.15%, in the order of lumen and nuclei respectively. 

Table 1 
Performance and statistical significance of the proposed ensemble system for Grade 3 versus Grade 4, 
averaged over 50 simulation runs

G3 vs. G4 Lumen 
classifier

Nuclei 
classifier

Proposed 
Ensemble

Significant of Ensemble   
With Lumen With Nuclei

Az 86.62 ±4.2 87.75±4.8 88.9 ±4.4 0.0088 P<0.01 0.19
Accuracy 87.29±6.29 88.07±4.25 89.5 ± 3.9 0.028   P<0.05 0.06   
Sensitivity 90.5±6.3 89.78±5.9 92.7 ± 5.2 0.05    P<0.05 0.006 p<0.01
Specificity 82.1±10.25 85.72±11.02 85.0±10.0 0.1511 …. 

Table 2 
Performance and statistical significance of the proposed ensemble system for benign versus Grade 4, 
averaged over 50 simulation runss

B vs. G4 Lumen 
classifier

Nuclei 
classifier

Proposed 
Ensemble

Significant of Ensemble   
With Lumen With Nuclei

Az 89.2±5.0 90.03±4.43 92.4 ± 4.7 0.0014 0.0107
Accuracy 89.2+ 5.0 89.88±4.5 92.4 ± 4.6 0.0014 0.0057
Sensitivity 90.92±7.5 86.2±7.9 91.07± 7.0 0.9070 0.0011
Specificity 87.53±9.0 93.8±5.5 93.8 ± 7.5 0.0002 …
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For benign versus Grade 4 case in prostate cancer diagnosis, the comparison of average 
classification accuracy (Az) value for the proposed ensemble learning and an individual 
classifier of nuclei and lumen is listed in Table 2. As shown in Table 2, the proposed Ensemble 
significantly (p-value=0.0107) outperformed the nuclei and lumen single classifiers. In benign 
versus Grade 4, the nuclei tissue components fared better than nuclei. 

In the case of benign versus Grade 3 (Table 3), the results indicated the proposed ensemble 
learning and the lumen classifier showed a greater accuracy (Az= 97.0%). However, the nuclei 
classifier achieved less accuracy around Az=96.0% since the coarse of nuclei images in grade 
3 and benign are relatively close to each other (Nguyen, Sabata, & Jain, 2012). Therefore, the 
nuclei texture features are not suitable for diagnosing benign versus grade 3.

Table 3 
Performance and statistical significance of the proposed system for benign versus Grade 3, averaged over 
50 simulation runs and statistical significance.

B vs G3 Lumen 
classifier

Nuclei 
classifier

Proposed 
Ensemble

Significant of Ensemble   
With Lumen With Nuclei

Az 97.7±2.3 96.0±2.5 97.85±1.9 … 0.0001 p<0.001
Accuracy 97.8±2.1 96.26±2.47 97.9±1.7 … 0.0001 p<0.001
Sensitivity 96.1±4.5 94.5±4.4 97.0±3.64 … 0.0025 p<0.01
Specificity 99.2±1.7 97.6±2.8 98.6±1.84 … …

Experimental results in Tables 1 to 3 indicate that the proposed ensemble system which 
combines the posterior probabilities of the nuclei and lumen classifiers can provide significant 
performance for solving two-class classification tasks in prostate cancer diagnosing and grading. 
This study also found that the texture features that were extracted from the spatial distribution 
of nuclei and lumen tissue components can be successfully used for diagnosis and grading 
prostate cancer, especially Grade 3 versus Grade 4.

In addition, the experiments found the texture features of nuclei instances (tissue component 
images) are suitable for Grade 3 versus Grade 4, and benign versus Grade 4 cases. This is due 
to their superior performance over the texture features of lumen images, and the coarseness 
of nuclei images are higher in Grade 4 than Grade 3, and benign. 

CONCLUSION 

In this paper, a new ensemble CAD system is proposed for classifying and grading 
histopathology images of prostate needle biopsies. In this ensemble, two weak classifiers were 
constructed based on the texture features (Haralick, HOG and RML) of nuclei and lumen tissue 
components. This was followed by an ensemble learning system which fuses the decision of 
the nuclei and lumen classifiers using the product rule. 

Results have indicated a significant improvement in the classification accuracy by using our 
ensemble learning comparing single nuclei or lumen classifiers especially when distinguishing 
between Grade 3 versus Grade 4, the most challenging case in Gleason grade of prostate cancer. 
A key characteristic of the proposed ensemble CAD is that diverse classifiers were fused in the 
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ensemble, thus, producing an overall increase in the classification performance. In contrast, 
to the single classifier, only the texture features of one type of prostate tissue component was 
used. This ensemble is generic and can be used for the diagnosis of other diseases such as lung 
and breast cancer by utilising the nuclei and lumen tissue components. 
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